Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mech Ageing Dev ; 220: 111943, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762036

RESUMEN

This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.

2.
Pathogens ; 12(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38133287

RESUMEN

A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer. This review discusses how microbiota dysbiosis may contribute to obesity and obesity-related diseases, which are linked to breast cancer. It also explores the potential of the gut microbiome to influence systemic immunity, leading to carcinogenesis via the modulation of immune function. This review underscores the potential use of the microbiome profile as a diagnostic tool and treatment target, with strategies including probiotics, fecal microbiota transplantation, and dietary interventions. However, this emphasizes the need for more research to fully understand the complex relationship between the microbiome, metabolic disorders, and breast cancer. Future studies should focus on elucidating the mechanisms underlying the impact of the microbiome on breast cancer and exploring the potential of the microbiota profile as a biomarker and treatment target.

3.
Exp Biol Med (Maywood) ; 248(23): 2341-2350, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38158807

RESUMEN

Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).


Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Humanos , Transcriptoma , Corazón , ARN Mensajero/genética , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
4.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38001739

RESUMEN

EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.

5.
Exp Biol Med (Maywood) ; 248(17): 1492-1499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837396

RESUMEN

Hyperoxia exposure of immature lungs contributes to lung injury and airway hyperreactivity. Up to now, treatments of airway hyperreactivity induced by hyperoxia exposure have been ineffective. The aim of this study was to investigate the effects of quercetin on hyperoxia-induced airway hyperreactivity, impaired relaxation, and lung inflammation. Newborn rats were exposed to hyperoxia (FiO2 > 95%) or ambient air (AA) for seven days. Subgroups were injected with quercetin (10 mg·kg-1·day-1). After exposures, tracheal cylinders were prepared for in vitro wire myography. Contraction to methacholine was measured in the presence or absence of organ bath quercetin and/or Nω-nitro-L-arginine methyl ester (L-NAME). Relaxation responses were evoked in preconstricted tissues using electrical field stimulation (EFS). Lung tumor necrosis factor-alpha (TNF-α) and interleukin-1ß (IL-1ß) levels were measured by enzyme-linked immunosorbent assay (ELISA). A P < 0.05 was considered statistically significant. Contractile responses of tracheal smooth muscle (TSM) of hyperoxic animals were significantly increased compared with AA animals (P < 0.001). Treatment with quercetin significantly reduced contraction in hyperoxic groups compared with hyperoxic control (P < 0.01), but did not have any effect in AA groups. In hyperoxic animals, relaxation of TSM was significantly reduced compared with AA animals (P < 0.001), while supplementation of quercetin restored the lost relaxation in hyperoxic groups. Incubation of preparations in L-NAME significantly reduced the quercetin effects on both contraction and relaxation (P < 0.01). Treatment of hyperoxic animals with quercetin significantly decreased the expression of TNF-α and IL-1ß compared with hyperoxic controls (P < 0.001 and P < 0.01, respectively).The findings of this study demonstrate the protective effect of quercetin on airway hyperreactivity and suggest that quercetin might serve as a novel therapy to prevent and treat neonatal hyperoxia-induced airway hyperreactivity and inflammation.


Asunto(s)
Asma , Hiperoxia , Ratas , Animales , Ratas Sprague-Dawley , Animales Recién Nacidos , Quercetina/farmacología , NG-Nitroarginina Metil Éster/farmacología , Hiperoxia/complicaciones , Hiperoxia/patología , Factor de Necrosis Tumoral alfa/metabolismo , Pulmón/patología , Asma/metabolismo , Suplementos Dietéticos
6.
Biol Direct ; 18(1): 70, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37899484

RESUMEN

BACKGROUND: The study aimed to identify transcripts of specific ion channels in rat ventricular cardiomyocytes and determine their potential role in the regulation of ionic currents in response to mechanical stimulation. The gene expression levels of various ion channels in freshly isolated rat ventricular cardiomyocytes were investigated using the RNA-seq technique. We also measured changes in current through CaV1.2 channels under cell stretching using the whole-cell patch-clamp method. RESULTS: Among channels that showed mechanosensitivity, significant amounts of TRPM7, TRPC1, and TRPM4 transcripts were found. We suppose that the recorded L-type Ca2+ current is probably expressed through CaV1.2. Furthermore, stretching cells by 6, 8, and 10 µm, which increases ISAC through the TRPM7, TRPC1, and TRPM4 channels, also decreased ICa,L through the CaV1.2 channels in K+ in/K+ out, Cs+ in/K+ out, K+ in/Cs+ out, and Cs+ in/Cs+ out solutions. The application of a nonspecific ISAC blocker, Gd3+, during cell stretching eliminated ISAC through nonselective cation channels and ICa,L through CaV1.2 channels. Since the response to Gd3+ was maintained in Cs+ in/Cs+ out solutions, we suggest that voltage-gated CaV1.2 channels in the ventricular myocytes of adult rats also exhibit mechanosensitive properties. CONCLUSIONS: Our findings suggest that TRPM7, TRPC1, and TRPM4 channels represent stretch-activated nonselective cation channels in rat ventricular myocytes. Probably the CaV1.2 channels in these cells exhibit mechanosensitive properties. Our results provide insight into the molecular mechanisms underlying stretch-induced responses in rat ventricular myocytes, which may have implications for understanding cardiac physiology and pathophysiology.


Asunto(s)
Miocitos Cardíacos , Canales Catiónicos TRPM , Ratas , Animales , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , ARN , Ventrículos Cardíacos/metabolismo , Cationes/metabolismo , Cationes/farmacología
7.
Adipocyte ; 12(1): 2248673, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37599422

RESUMEN

Technologies are transforming the understanding of adipose tissue as a complex and dynamic tissue that plays a critical role in energy homoeostasis and metabolic health. This mini-review provides a brief overview of the potential impact of novel technologies in biomedical research and aims to identify areas where these technologies can make the most significant contribution to adipose tissue research. It discusses the impact of cutting-edge technologies such as single-cell sequencing, multi-omics analyses, spatial transcriptomics, live imaging, 3D tissue engineering, microbiome analysis, in vivo imaging, and artificial intelligence/machine learning. As these technologies continue to evolve, we can expect them to play an increasingly important role in advancing our understanding of adipose tissue and improving the treatment of related diseases.


Asunto(s)
Tejido Adiposo , Inteligencia Artificial , Perfilación de la Expresión Génica , Homeostasis , Multiómica
8.
Cells ; 12(15)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37566068

RESUMEN

Vascular smooth muscle voltage-gated potassium (Kv) channels have been proposed to contribute to myogenic autoregulation. Surprisingly, in initial experiments, we observed that the Kv2 channel inhibitor stromatoxin induced vasomotion without affecting myogenic tone. Thus, we tested the hypothesis that Kv2 channels contribute to myogenic autoregulation by fine-tuning the myogenic response. Expression of Kv2 channel mRNA was determined using real-time PCR and 'multiplex' single-cell RT-PCR. Potassium currents were measured using the patch-clamp technique. Contractile responses of intact arteries were studied using isobaric myography. Expression of Kv2.1 but not Kv2.2 channels was detected in intact rat superior cerebellar arteries and in single smooth muscle cells. Stromatoxin, a high-affinity inhibitor of Kv2 channels, reduced smooth muscle Kv currents by 61% at saturating concentrations (EC50 36 nmol/L). Further, stromatoxin (10-100 nmol/L) induced pronounced vasomotion in 48% of the vessels studied. In vessels not exhibiting vasomotion, stromatoxin did not affect myogenic reactivity. Notably, in vessels exhibiting stromatoxin-induced vasomotion, pressure increases evoked two effects: First, they facilitated the occurrence of random vasodilations and/or vasoconstrictions, disturbing the myogenic response (24% of the vessels). Second, they modified the vasomotion by decreasing its amplitude and increasing its frequency, thereby destabilizing myogenic tone (76% of the vessels). Our study demonstrates that (i) Kv2.1 channels are the predominantly expressed Kv channels in smooth muscle cells of rat superior cerebellar arteries, and (ii) Kv2.1 channels provide a novel type of negative feedback mechanism in myogenic autoregulation by preventing vasomotion and thereby safeguarding the myogenic response.


Asunto(s)
Arterias , Canales de Potasio Shab , Animales , Ratas , Arterias/metabolismo , Potasio/metabolismo , Ratas Sprague-Dawley , Canales de Potasio Shab/metabolismo , Vasoconstricción
9.
Cent Eur J Public Health ; 31(2): 133-139, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37451247

RESUMEN

OBJECTIVES: This study aimed at evaluating the serum redox status in type 2 diabetes mellitus (T2DM) accompanied with an imbalance in iron concentrations. METHODS: Diabetic patients were grouped according to serum iron levels [normal (DNFe), low (DLFe), and high (DHFe)], and their clinical and redox parameters [total sulfhydryl groups (tSH), uric acid (UA), and total bilirubin (tBILI) as non-enzymatic antioxidants, and malondialdehyde (MDA) and advanced oxidation products of proteins (AOPP) as markers of oxidative stress] were determined. RESULTS: Glucose and HbA1c levels in the T2DM patients did not differ in function of serum iron. T2DM was associated with reduced tSH levels. In the diabetic patients, tSH, UA, and tBILI negatively correlated with MDA, as well as HbA1c with UA. Accordingly, AOPP and MDA were higher in the diabetic groups compared to the controls. The reduced antioxidant capacity was particularly pronounced in the DLFe group, which was further characterized by lower levels of UA and tBILI compared to the other groups. Subsequently, the level of MDA in the DLFe group was higher compared to the DNFe and DHFe groups. The positive correlation between serum iron levels and the antioxidants UA and tBILI, in conjunction with the negative correlation between serum iron levels and the markers of oxidative stress in the diabetic patients, corroborated the indication that comparatively higher level of oxidative stress is present when T2DM coexists with decreased iron levels. CONCLUSIONS: T2DM-associated redox imbalance is characterized by a decrease in serum total sulfhydryl groups and low serum iron-associated reduction in uric acid and total bilirubin levels, accompanied by increased oxidative stress markers. The relatively noninvasive and simple determination of these parameters may be of considerable interest in monitoring the pathophysiological processes in T2DM patients, and may provide useful insights into the effects of potential therapeutic or nutritional interventions.


Asunto(s)
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Ácido Úrico , Hemoglobina Glucada , Productos Avanzados de Oxidación de Proteínas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Biomarcadores , Hierro , Bilirrubina/metabolismo , Tirotropina/metabolismo
10.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175144

RESUMEN

Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR's beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavailable compared to CUR. However, its mechanisms of action have not been fully elucidated. This paper addresses the preventive role of THC on various brain dysfunctions as well as its effects on brain redox processes, traumatic brain injury, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease in various animal or cell culture models. In addition to its strong antioxidant properties, the effects of THC on the reduction of amyloid ß aggregates are also well documented. The therapeutic potential of THC to treat patterns of mitochondrial brain dysmorphic dysfunction is also addressed and thoroughly reviewed, as is evidence from experimental studies about the mechanism of mitochondrial failure during cerebral ischemia/reperfusion injury. THC treatment also results in a dose-dependent decrease in ERK-mediated phosphorylation of GRASP65, which prevents further compartmentalization of the Golgi apparatus. The PI3K/AKT signaling pathway is possibly the most involved mechanism in the anti-apoptotic effect of THC. Overall, studies in various animal models of different brain disorders suggest that THC can be used as a dietary supplement to protect against traumatic brain injury and even improve brain function in Alzheimer's and Parkinson's diseases. We suggest further preclinical studies be conducted to demonstrate the brain-protective, anti-amyloid, and anti-Parkinson effects of THC. Application of the methods used in the currently reviewed studies would be useful and should help define doses and methods of THC administration in different disease conditions.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Curcumina , Animales , Péptidos beta-Amiloides , Fosfatidilinositol 3-Quinasas , Encéfalo , Curcumina/química
11.
Antioxidants (Basel) ; 12(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37237992

RESUMEN

This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins ß-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.

12.
Toxicol Mech Methods ; 33(1): 1-17, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35450505

RESUMEN

Reactive oxygen species (ROS) and associated oxidative stress are the main contributors to pathophysiological changes following myocardial infarction (MI), which is the principal cause of death from cardiovascular disease. The glutathione (GSH)/glutathione peroxidase (GPx) system appears to be the main and most active cardiac antioxidant mechanism. Hence, enhancement of the myocardial GSH system might have protective effects in the setting of MI. It follows that by increasing antioxidant capacity, the heart will be able to reduce the damage associated with MI and even prevent/weaken the occurrence of oxidative stress, which is highly ranked among the factors responsible for the occurrence of acute MI. For these reasons, the primary goal of future investigations should be to address the effects of different antioxidative compounds and especially cysteine derivatives like N-acetyl cysteine (NAC) and L-2-oxothiazolidine-4-carboxylic acid (OTC) as precursors responsible for the enhancement of the GSH-related antioxidant system's capacity. It is assumed that this will lay down the basis for elucidation of the mechanisms throughout which applicable doses of OTC will manifest a potentially positive impact in the reduction of adverse effects of acute MI. The inclusion of OTC in the models for prediction of the distribution of oxygen in infarcted animal hearts can help to upgrade existing computational models. Such a model would be based on computational geometries of the heart, but the inclusion of biochemical redox features in addition to angiogenic therapy, despite improvement of the post-infarcted oxygenated outcome could enhance the accuracy of the predictive values of oxygenation.


Asunto(s)
Antioxidantes , Infarto del Miocardio , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Motivación , Estrés Oxidativo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Glutatión/metabolismo , Acetilcisteína/farmacología
13.
Mol Med ; 28(1): 129, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316651

RESUMEN

Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1ß, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-ß/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Fibrosis , Estrés Oxidativo , Inflamación/metabolismo
14.
Life (Basel) ; 12(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36362863

RESUMEN

In this review, the basic metabolic characteristics of the curcuminoid tetrahydrocurcumin (THC) at the level of the intestinal microbiota were addressed. Special attention was given to the bactericidal effects of one of the THC-phospholipid formulations, which has shown greater bioavailability and activity than pure THC. Similarly, quinoline derivatives and amino acid conjugates of THC have also shown antibacterial effects in the gut. The microbial effect of pure THC is particularly pronounced in pathophysiological conditions related to the function of the intestinal microbiota, such as type II diabetes. Furthermore, the antiviral characteristics of Cur compared to those of THC are more pronounced in preventing the influenza virus. In the case of HIV infections, the new microemulsion gel formulations of THC possess high retention during preventive application in the vagina and, at the same time, do not disturb the vaginal microbiota, which is critical in maintaining low vaginal pH. Based on the reviewed literature, finding new formulations of THC which can increase its bioavailability and activity and emphasize its antibacterial and antiviral characteristics could be very important. Applying such THC formulations in preventing and treating ailments related to the microbiotic compartments in the body would be beneficial from a medical point of view.

15.
Life (Basel) ; 12(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36294901

RESUMEN

This study aimed to evaluate the cardioprotective effects of L-2-oxothiazolidine-4-carboxylate (OTC) against isoproterenol (ISO)-induced acute myocardial infarction (MI) in rats. Results demonstrated that OTC treatments inhibited ISO-induced oxidative damage, suppressed lipid peroxidation, and increased superoxide dismutase and catalase activity in the hearts of the treated rats compared to those of the untreated controls. The ISO-related NF-κB activation was reduced due to the OTC treatment, and lower degrees of inflammatory cell infiltration and necrosis in the hearts were observed. In summary, OTC treatments exerted cardioprotective effects against MI in vivo, mainly due to enhancing cardiac antioxidant activity.

16.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014335

RESUMEN

Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling. The effects of THC on angiogenesis in CaSki xenografted mice and the expression of vascular endothelial growth factor (VEGF) are well documented. On the other hand, as an anti-inflammatory and antioxidant compound, THC is involved in enhancing homocysteine-induced mitochondrial remodeling in brain endothelial cells. The experimental evidence regarding the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion injury and the therapeutic potential of THC to alleviate mitochondrial cerebral dysmorphic dysfunction patterns is also scrutinized and explored. Overall, the studies on different animal models of disease suggest that THC can be used as a dietary supplement to protect against cardiovascular changes caused by various factors (such as heavy metal overload, oxidative stress, and carcinogenesis). Additionally, the reviewed literature data seem to confirm THC's potential to improve mitochondrial dysfunction in cerebral vasculature during ischemic stroke through epigenetic mechanisms. We suggest that further preclinical studies should be implemented to demonstrate THC's vascular-protective, antiangiogenic, and anti-tumorigenic effects in humans. Applying the methods used in the presently reviewed studies would be useful and will help define the doses and methods of THC administration in various disease settings.


Asunto(s)
Células Endoteliales , Hipertensión , Animales , Humanos , Ratones , Curcumina/análogos & derivados , Modelos Animales de Enfermedad , Hipertensión/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular
17.
J Toxicol ; 2022: 5647178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509523

RESUMEN

Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing "water blooms" or "cyanoblooms," which may lead to environmental disaster-water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (ß-N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.

18.
Physiol Rep ; 10(7): e15246, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35384354

RESUMEN

The mechanoelectrical feedback (MEF) mechanism in the heart that plays a significant role in the occurrence of arrhythmias, involves cation flux through cation nonselective stretch-activated channels (SACs). It is well known that nitric oxide (NO) can act as a regulator of MEF. Here we addressed the possibility of SAC's regulation along NO-dependent and NO-independent pathways, as well as the possibility of S-nitrosylation of SACs. In freshly isolated rat ventricular cardiomyocytes, using the patch-clamp method in whole-cell configuration, inward nonselective stretch-activated cation current ISAC was recorded through SACs, which occurs during dosed cell stretching. NO donor SNAP, α1-subunit of sGC activator BAY41-2272, sGC blocker ODQ, PKG blocker KT5823, PKG activator 8Br-cGMP, and S-nitrosylation blocker ascorbic acid, were employed. We concluded that the physiological concentration of NO in the cell is a necessary condition for the functioning of SACs. An increase in NO due to SNAP in an unstretched cell causes the appearance of a Gd3+ -sensitive nonselective cation current, an analog of ISAC , while in a stretched cell it eliminates ISAC . The NO-independent pathway of sGC activation of α subunit, triggered by BAY41-2272, is also important for the regulation of SACs. Since S-nitrosylation inhibitor completely abolishes ISAC , this mechanism occurs. The application of BAY41-2272 cannot induce ISAC in a nonstretched cell; however, the addition of SNAP on its background activates SACs, rather due to S-nitrosylation. ODQ eliminates ISAC , but SNAP added on the background of stretch increases ISAC in addition to ODQ. This may be a result of the lack of NO as a result of inhibition of NOS by metabolically modified ODQ. KT5823 reduces PKG activity and reduces SACs phosphorylation, leading to an increase in ISAC . 8Br-cGMP reduces ISAC by activating PKG and its phosphorylation. These results demonstrate a significant contribution of S-nitrosylation to the regulation of SACs.


Asunto(s)
Miocitos Cardíacos , Óxido Nítrico , Animales , Sitios de Unión , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Ratas
19.
Materials (Basel) ; 14(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205094

RESUMEN

The bone healing process following osteotomy may vary according to the type of surgical instrumentation. The aim of the present in vivo study was to determine thermal changes of the bone tissue following osteotomies performed by Er:YAG laser ablation in contact and non-contact modes, piezoelectric surgery, and surgical drill using an infrared thermographic camera. For each measurement, the temperature before the osteotomy-baseline (Tbase) and the maximal temperature measured during osteotomy (Tmax) were determined. Mean temperature (ΔT) values were calculated for each osteotomy technique. The significance of the difference of the registered temperature between groups was assessed by the ANOVA test for repeated measures. Mean baseline temperature (Tbase) was 27.9 ± 0.3 °C for contact Er:YAG laser, 29.9 ± 0.3 °C for non-contact Er:YAG laser, 29.4 ± 0.3 °C for piezosurgery, and 28.3 ± 0.3 °C for surgical drill. Mean maximum temperature (Tmax) was 29.9 ± 0.5 °C (ΔT = 1.9 ± 0.3 °C) for contact Er:YAG laser, 79.1 ± 4.6 °C (ΔT = 49.1 ± 4.4 °C) for non-contact Er:YAG laser, 29.1 ± 0.2 °C (ΔT = -0.2 ± 0.3 °C) for piezosurgery, and 27.3 ± 0.4 °C (ΔT = -0.9 ± 0.4 °C) for surgical drill. Statistically significant temperature changes were observed for the non-contact laser. The results of the study showed beneficial effects of the osteotomy performed by the Er:YAG laser used in the contact mode of working as well as for piezosurgery, reducing the potential overheating of the bone tissue as determined by means of infrared thermography.

20.
Basic Clin Pharmacol Toxicol ; 128(2): 234-240, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32946663

RESUMEN

The main objective of this study was to determine the primary intracellular signalling pathway affected by prolonged (2 hours) incubation in interleukin-2 (IL-2). Based on the inflammatory nature of IL-2, priority was given to the involvement of inhibitory-kappaB kinase/nuclear factor-kappaB (IKK/NF-κB) signalling. All of the experiments were performed on freshly prepared cardiomyocytes isolated from rat left ventricles. After isolation, the whole-cell voltage-clamp recordings were performed on single cells. After 2 hours of incubation in IL-2, the current at 0 mV was approximately 100% higher than at the start of the incubation. ACHP, a highly specific kinase ß inhibitor, in a concentration of 10 nmol/L, caused significant reduction in the ICa,L . IL-2 (2 ng/mL) in the presence of 0.1 µmol/L IMD-0354 as a specific inhibitor of IKKß, caused nearly no changes in the ICa,L . IL-2 (3 ng/mL) induced a significant increase in phosphorylated NF-κB p65. The cardiomyocytes incubated in a Kraftbrühe solution containing IL-2 plus PDTC as a specific inhibitor of inducible nitric oxide synthase (iNOS) for 2 hours had a similar ICa,L increase compared to the cells incubated only in IL-2. IL-2-induced enhancement in L-type Ca2+ channels was mediated by IKK/NF-κB signalling, but not via iNOS-mRNA signalling.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Quinasa I-kappa B/metabolismo , Interleucina-2/farmacología , Miocitos Cardíacos/efectos de los fármacos , FN-kappa B/metabolismo , Animales , Potenciales de la Membrana , Miocitos Cardíacos/metabolismo , Ratas Wistar , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...