Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 362: 142656, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908449

RESUMEN

Feedstock characteristics impact biochar physicochemical properties, and reproducible biochar properties are essential for any potential application. However, in most articles, feedstock aspects (i.e., taxonomic name of the species, part of the plant, and phenological phase) are scarcely reported. This research aimed at studying the effect of species and phenological stage of the feedstock on the properties of the derived biochars and, thus, adsorption capacities in water treatment. In this study, we analysed the anatomical characteristics of three different woody bamboo species [Guadua chacoensis (GC), Phyllostachys aurea (PA), and Bambusa tuldoides (BT)] in culms harvested at two different phenological phases (young and mature), and statistically correlated them with the characteristics of the six derived biochars, including their adsorption performance in aqueous media. Sclerenchyma fibres and parenchyma cells diameter and cell-wall width significantly differed among species. Additionally, sclerenchyma fibres and parenchyma cell-wall width as well as sclerenchyma fibre cell diameters are dependent on the phenological phase of the culms. Consequently, differences in biochar characteristics (i.e., yield and average pore diameter) were also observed, leading to differential methylene blue (MB) adsorption capacities between individuals at different phenological phases. MB adsorption capacities were higher for biochar produced from young culms compared to those obtained from matures ones (i.e., GC: 628.66 vs. 507.79; BT: 537.45 vs. 477.53; PA: 477.52 vs. 462.82 mg/g), which had smaller cell wall widths leading to a lower percentage of biochar yield. The feedstock anatomical properties determined biochar characteristics which modulated adsorption capacities.


Asunto(s)
Bambusa , Carbón Orgánico , Azul de Metileno , Carbón Orgánico/química , Azul de Metileno/química , Adsorción , Bambusa/química , Purificación del Agua/métodos , Madera/química
2.
J Colloid Interface Sci ; 587: 767-779, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33309243

RESUMEN

Commercialization of novel adsorbents technology for providing safe drinking water must consider scale-up methodological approaches to bridge the gap between laboratory and industrial applications. These imply complex matrix analysis and large-scale experiment designs. Arsenic concentrations up to 200-fold higher (2000 µg/L) than the WHO safe drinking limit (10 µg/L) have been reported in Latin American drinking waters. In this work, biochar was developed from a single, readily available, and taxonomically identified woody bamboo species, Guadua chacoensis. Raw biochar (BC) from slow pyrolysis (700 °C for 1 h) and its analog containing chemically precipitated Fe3O4 nanoparticles (BC-Fe) were produced. BC-Fe performed well in fixed-bed column sorption. Predicted model capacities ranged from 8.2 to 7.5 mg/g and were not affected by pH 5-9 shift. The effect of competing matrix chemicals including sulfate, phosphate, nitrate, chloride, acetate, dichromate, carbonate, fluoride, selenate, and molybdate ions (each at 0.01 mM, 0.1 mM and 1 mM) was evaluated. Fe3O4 enhanced the adsorption of arsenate as well as phosphate, molybdate, dichromate and selenate. With the exception of nitrate, individually competing ions at low concentration (0.01 mM) did not significantly inhibit As(V) sorption onto BC-Fe. The presence of ten different ions in low concentrations (0.01 mM) did not exert much influence and BC-Fe's preference for arsenate, and removal remained above 90%. The batch and column BC and BC-Fe adsorption capacities and their ability to provide safe drinking water were evaluated using a naturally contaminated tap water (165 ± 5 µg/L As). A 960 mL volume (203.8 Bed Volumes) of As-free drinking water was collected from a 1 g BC-Fe fixed bed. Adsorbent regeneration was attempted with (NH4)2SO4, KOH, or K3PO4 (1 M) strippers. Potassium phosphate performed the best for BC-Fe regeneration. Safe disposal options for the exhausted adsorbents are proposed. Adsorbents and their As-laden analogues (from single and multi-component mixtures) were characterized using high resolution XPS and possible competitive interactions and adsorption pathways and attractive interactions were proposed including electrostatic attractions, hydrogen bonding and weak chemisorption to BC phenolics. Stoichiometric precipitation of metal (Mg, Ca and Fe) oxyanion (phosphate, molybdate, selenate and chromate) insoluble compounds is considered. The use of a packed BC-Fe cartridge to provide As-free drinking water is presented for potential commercial use. BC-Fe is an environmentally friendly and potentially cost-effective adsorbent to provide arsenic-free household water.


Asunto(s)
Arsénico , Sasa , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arsénico/análisis , Carbón Orgánico , Compuestos Férricos , Hierro , Cinética , Transferencia de Tecnología , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 706: 135943, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31862592

RESUMEN

Discarded bamboo culms of Guadua chacoensis were used for biochar remediation of aqueous As(V). Raw biochar (BC), activated biochar (BCA), raw Fe3O4 nanoparticle-covered biochar (BC-Fe), and activated biochar covered with Fe3O4 nanoparticles (BCA-Fe) were prepared, characterized and tested for As(V) aqueous adsorption. The goal is to develop an economic, viable, and sustainable adsorbent to provide safe arsenic-free water. Adsorbents were characterized using scanning electron microscopy (SEM) and energy dispersive analysis by X-ray (SEM-EDX), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (TEM-EDS), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller surface area measurements (SBET), point of zero charge determinations (PZC), and elemental analysis. Activation with KOH increased the O/C ratio and the surface area of BC from 6.7 m2/g to 1239.7 m2/g (BCA). As(V) sorption equilibrium was achieved within <2 h for all four adsorbents and kinetics followed the pseudo-second-order model. At a 10 mg/L initial As(V) concentration, BC-Fe achieved a 100% removal (5 mg/g) over a pH 5 to 9 window. Sorption was endothermic on all four adsorbents and the capacities rose with the increasing temperature. Langmuir capacities at 40 °C for BC, BCA, BC-Fe, and BCA-Fe were 256, 217, 457, and 868 mg/g, respectively, and capacities were compared with other sorbents. Breakthrough fixed-bed column sorption was carried out for BC and BC-Fe producing 6.6 mg/g and 13.9 mg/g bed capacities, respectively. Potassium phosphate was a better As stripping agent than sodium bicarbonate. Performance of the adsorbents in an As(V)-spiked natural water and a naturally As(V)-contaminated domestic water were assessed. Robust arsenate sequestration occurred generating As-safe water (As <0.01 mg/L), despite the presence of competing ions. Stoichiometric precipitation of iron-arsenate complexes triggered by iron dissolution was also established.


Asunto(s)
Sasa , Purificación del Agua , Adsorción , Arsénico , Carbón Orgánico , Compuestos Férricos , Cinética , Nanopartículas del Metal , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA