Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675577

RESUMEN

Curcumin is a natural compound with a great pharmaceutical potential that involves anticancer, anti-inflammatory, antioxidant, and neuroprotective activity. Unfortunately, its low bioavailability, instability, and poor water solubility significantly deteriorate its clinical use. Many attempts have been made to overcome this issue, and encapsulating curcumin in a hydrogel matrix may improve those properties. Hydrogel formulation is used in many drug delivery forms, including classic types and novel forms such as self-assembly systems or responsive to external factors. Reviewed studies confirmed better properties of hydrogel-stabilized curcumin in comparison to pure compound. The main enhanced characteristics were chemical stability, bioavailability, and water solubility, which enabled these systems to be tested for various diseases. These formulations were evaluated for wound healing properties, effectiveness in treating skin diseases, and anticancer and regenerative activity. Hydrogel formulation significantly improved biopharmaceutical properties, opening the opportunity to finally see curcumin as a clinically approved substance and unravel its therapeutic potential.


Asunto(s)
Curcumina , Hidrogeles , Curcumina/química , Curcumina/farmacología , Hidrogeles/química , Humanos , Solubilidad , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Animales , Cicatrización de Heridas/efectos de los fármacos , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacología
2.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836288

RESUMEN

Many purine derivatives are active pharmaceutical ingredients of significant importance in the therapy of autoimmune diseases, cancers, and viral infections. In many cases, their medical use is limited due to unfavorable physicochemical and pharmacokinetic properties. These problems can be overcome by the preparation of the prodrugs of purines or by combining these compounds with nanoparticles. Herein, we aim to review the scientific progress and perspectives for polymer-based nanoparticles as drug delivery systems for purines. Polymeric nanoparticles turned out to have the potential to augment antiviral and antiproliferative effects of purine derivatives by specific binding to receptors (ASGR1-liver, macrophage mannose receptor), increase in drug retention (in eye, intestines, and vagina), and permeation (intranasal to brain delivery, PEPT1 transport of acyclovir). The most significant achievements of polymer-based nanoparticles as drug delivery systems for purines were found for tenofovir disoproxil in protection against HIV, for acyclovir against HSV, for 6-mercaptopurine in prolongation of mice ALL model life, as well as for 6-thioguanine for increased efficacy of adoptively transferred T cells. Moreover, nanocarriers were able to diminish the toxic effects of acyclovir, didanosine, cladribine, tenofovir, 6-mercaptopurine, and 6-thioguanine.

3.
Eur J Med Chem ; 261: 115820, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37776575

RESUMEN

Epigallocatechin gallate (EGCG) is a polyphenol present in green tea (Camellia sinensis), which has revealed anti-cancer effects toward a variety of cancer cells in vitro and protective potential against neurodegenerative diseases such as Alzheimer's and Parkinson's. Unfortunately, EGCG presents disappointing bioavailability after oral administration, primarily due to its chemical instability and poor absorption. Due to these limitations, EGCG is currently not used in medication, but only as a dietary supplement in the form of green tea extract. Therefore, it needs further modifications before being considered suitable for extensive medical applications. In this article, we review the scientific literature about EGCG derivatives focusing on their biological properties and potential medical applications. The most common chemical modifications of epigallocatechin gallate rely on introducing fatty acid chains or sugar molecules to its chemical structure to modify solubility. Another frequently employed procedure is based on blocking EGCG's hydroxyl groups with various substituents. Novel derivatives reveal interesting properties, of which, antioxidant, anti-inflammatory, antitumor and antimicrobial, are especially important. It is worth noting that the most promising EGCG derivatives present higher stability and activity than base EGCG.


Asunto(s)
Camellia sinensis , Catequina , Polifenoles/farmacología , Catequina/farmacología , Té/química , Camellia sinensis/química , Antioxidantes/farmacología
4.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446877

RESUMEN

Ferrocene is useful in modern organometallic chemistry due to its versatile applications in material sciences, catalysis, medicinal chemistry, and diagnostic applications. The ferrocene moiety can potentially serve many purposes in therapeutics and diagnostics. In the course of this study, (6-bromo-1-oxohexyl)ferrocene was combined with dimercaptomaleonitrile sodium salt to yield a novel maleonitrile derivative. Subsequently, this compound was subjected to an autocyclotetramerization reaction using the Linstead conditions in order to obtain an octaferrocenyl-substituted magnesium(II) sulfanyl porphyrazine. Following that, both compounds-the maleonitrile derivative and the porphyrazine derivative-were subjected to physicochemical characterization using UV-Vis, ES-TOF, MALDI-TOF, and one-dimensional and two-dimensional NMR spectroscopy. Moreover, the sulfanyl porphyrazine was subjected to various photophysical studies, including optical absorption and emission measurements, as well as the evaluation of its photochemical properties. Values of singlet oxygen generation quantum yields were obtained in different organic solvents. The electrochemical properties of the synthesized compounds were studied using cyclic voltammetry. According to the electrochemical results, the presence of electron-withdrawing oxohexyl groups attached to ferrocene afforded significantly more positive oxidation potentials of the ferrocene-based redox process up to 0.34 V vs. Fc+/Fc.


Asunto(s)
Oxígeno Singlete , Metalocenos , Oxidación-Reducción , Oxígeno Singlete/química , Solventes
5.
Nanomaterials (Basel) ; 13(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37177076

RESUMEN

Flavonoids are polyphenolic compounds widely occurring throughout the plant kingdom. They are biologically active and have many medical applications. Flavonoids reveal chemopreventive, anticarcinogenic, and antioxidant properties, as well as being able to modulate the immune system response and inhibit inflammation, angiogenesis, and metastasis. Polyphenols are also believed to reverse multidrug resistance via various mechanisms, induce apoptosis, and activate cell death signals in tumor cells by modulating cell signaling pathways. The main limitation to the broader usage of flavonoids is their low solubility, poor absorption, and rapid metabolism. To tackle this, the combining of flavonoids with nanocarriers could improve their bioavailability and create systems of wider functionalities. Recently, interest in hybrid materials based on combinations of metal nanoparticles with flavonoids has increased due to their unique physicochemical and biological properties, including improved selectivity toward target sites. In addition, flavonoids have further utilities, even in the initial step of preparation of metal nanomaterials. The review offers knowledge on multiple possibilities of the synthesis of flavonoid-metal nanoparticle conjugates, as well as presents some of their features such as size, shape, surface charge, and stability. The flavonoid-metal nanoparticles are also discussed regarding their biological properties and potential medical applications.

6.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903741

RESUMEN

A metal-free porphyrazine derivative with peripheral phthalimide substituents was metallated with a nickel(II) ion. The purity of the nickel macrocycle was confirmed using HPLC, and characterized by MS, UV-VIS, and 1D (1H, 13C) and 2D (1H-13C HSQC, 1H-13C HMBC, 1H-1H COSY) NMR techniques. The novel porphyrazine was combined with various carbon nanomaterials, such as carbon nanotubes-single walled (SWCNTs) and multi-walled (MWCNTs), and electrochemically reduced graphene oxide (rGO), to create hybrid electroactive electrode materials. The carbon nanomaterials' effect on the electrocatalytic properties of nickel(II) cations was compared. As a result, an extensive electrochemical characterization of the synthesized metallated porphyrazine derivative on various carbon nanostructures was carried out using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). An electrode modified with carbon nanomaterials GC/MWCNTs, GC/SWCNTs, or GC/rGO, respectively, was shown to have a lower overpotential than a bare glassy carbon electrode (GC), allowing for the measurement of hydrogen peroxide in neutral conditions (pH 7.4). It was shown that among the tested carbon nanomaterials, the modified electrode GC/MWCNTs/Pz3 exhibited the best electrocatalytic properties in the direction of hydrogen peroxide oxidation/reduction. The prepared sensor was determined to enable a linear response to H2O2 in concentrations ranging between 20-1200 µM with the detection limit of 18.57 µM and sensitivity of 14.18 µA mM-1 cm-2. As a result of this research, the sensors produced here may find use in biomedical and environmental applications.

7.
Eur J Med Chem ; 246: 114934, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455358

RESUMEN

Despite the recent dynamic development of medicine, influenza is still a significant epidemiological problem for people around the world. The growing resistance of influenza viruses to currently available antiviral drugs makes it necessary to search for new compounds or drug forms with potential high efficacy against human influenza A and B viruses. One of the methods of obtaining new active compounds is to chemically modify privileged structures occurring in the natural environment. The second solution, that is gaining more and more interest, is the use of modern drug carriers, which significantly improve physicochemical and pharmacokinetic parameters of the transported substances. Molecules known from the earliest times for their numerous therapeutic properties are glycyrrhizinic acid (GA) and glycyrrhetinic acid (GE). Both compounds constitute the main active agents of the licorice (Glycyrrhiza glabra, Leguminosae) root and, according to a number of scientific reports, show antiviral properties against both DNA and RNA viruses. The above information prompted many scientific teams around the world to obtain and test in vitro and/or in vivo new synthetic GA and GE derivatives against influenza A and B viruses. Similarly, in recent years, a significant amount of GA and GE-based drug delivery systems (DDS) such as nanoparticles, micelles, liposomes, nanocrystals, and carbon dots has been prepared and tested for antiviral activity, including those against influenza A and B viruses. This work systematizes the attempts undertaken to study the antiviral activity of new GA and GE analogs and modern DDS against clinically significant human influenza viruses, at the same time indicating the directions of their further development.


Asunto(s)
Ácido Glicirretínico , Glycyrrhiza , Herpesvirus Cercopitecino 1 , Virus de la Influenza A , Virus de la Influenza B , Gripe Humana , Humanos , Antivirales/farmacología , Antivirales/química , Sistemas de Liberación de Medicamentos , Ácido Glicirretínico/farmacología , Glycyrrhiza/química , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/química , Gripe Humana/tratamiento farmacológico
8.
Sci Total Environ ; 856(Pt 2): 159122, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183772

RESUMEN

Heterogeneous photocatalysis using titanium dioxide-based materials is considered a promising and innovative solution to the water pollution problem. However, due to the limitations concerning the use of the developed materials and the applied photodegradation conditions, the research on photoremediation using TiO2 often stays behind the lab door. The challenge is to convert the basic research into a successful innovation, leading to the implementation of this process into wastewater treatment. For this purpose, the most active materials and optimal photodegradation conditions must be chosen. This article collects and compares the studies on photocatalytic degradation of an emerging pollutant - sulfamethoxazole, an antibacterial drug - and attempts to find the best approaches to be successfully applied on an industrial scale. Various types of TiO2-based photocatalysts are compared, including different nanoforms, doped or polymer-based composites, composites with graphene, activated carbon, dyes or natural compounds, as well as possible supporting materials for TiO2. The paper covers the impact of the irradiation source (natural sunlight, LED, mercury or xenon lamps) and water matrix on the photodegradation process, considering the ecological and economic sustainability of the process. Emphasis is put on the stability, ease of separation and reuse of the photocatalyst, power and safety of the irradiation source, identification of photodegradation intermediates and toxicity assays. The main approaches are critically discussed, main challenges and perspectives for an effective photocatalytic water treatment technology are pointed out.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Sulfametoxazol , Catálisis , Titanio , Tecnología
9.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36551708

RESUMEN

Glioblastoma (GBM) is the most common malignant neoplasm in adults among all CNS gliomas, with the 5-year survival rate being as low as 5%. Among nanocarriers, liposomal nanoformulations are considered as a promising tool for precise drug delivery. The herein presented study demonstrates the possibility of encapsulating four selected natural compounds (curcumin, bisdemethoxycurcumin, acteoside, and orientin) and their mixtures in cationic liposomal nanoformulation composed of two lipid types (DOTAP:POPC). In order to determine the physicochemical properties of the new drug carriers, specific measurements, including particle size, Zeta Potential, and PDI index, were applied. In addition, NMR and EPR studies were carried out for a more in-depth characterization of nanoparticles. Within biological research, the prepared formulations were evaluated on T98G and U-138 MG glioblastoma cell lines in vitro, as well as on a non-cancerous human lung fibroblast cell line (MRC-5) using the MTT test to determine their potential as anticancer agents. The highest activity was exhibited by liposome-entrapped acteoside towards the T98G cell line with IC50 equal 2.9 ± 0.9 µM after 24 hours of incubation. Noteworthy, curcumin and orientin mixture in liposomal formulation exhibited a synergistic effect against GBM. Moreover, the impact on the expression of apoptosis-associated proteins (p53 and Caspase-3) of acteoside as well as curcumin and orientin mixture, as the most potent agents, was assessed, showing nearly 40% increase as compared to control U-138 MG and T98G cells. It should be emphasized that a new and alternative method of extrusion of the studied liposomes was developed.

10.
Sci Rep ; 12(1): 18658, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333591

RESUMEN

This study focuses on obtaining and characterizing novel chitosan-based biomaterials containing cannabis oil to potentially promote wound healing. The primary active substance in cannabis oil is the non-psychoactive cannabidiol, which has many beneficial properties. In this study, three chitosan-based films containing different concentrations of cannabis oil were prepared. As the amount of oil increased, the obtained biomaterials became rougher as tested by atomic force microscopy. Such rough surfaces promote protein adsorption, confirmed by experiments assessing the interaction between human albumin with the obtained materials. Increased oil concentration also improved the films' mechanical parameters, swelling capacity, and hydrophilic properties, which were checked by the wetting angle measurement. On the other hand, higher oil content resulted in decreased water vapour permeability, which is essential in wound dressing. Furthermore, the prepared films were subjected to an acute toxicity test using a Microtox. Significantly, the film's increased cannabis oil content enhanced the antimicrobial effect against A. fischeri for films in direct contact with bacteria. More importantly, cell culture studies revealed that the obtained materials are biocompatible and, therefore, they might be potential candidates for application in wound dressing materials.


Asunto(s)
Cannabis , Quitosano , Humanos , Vendajes/microbiología , Cicatrización de Heridas , Materiales Biocompatibles/farmacología
11.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234406

RESUMEN

Phthalocyanines (Pcs) are often used in photosensitization of titanium(IV) oxide, a commonly employed photocatalyst, as such an approach holds the promise of obtaining highly stable and efficient visible light-harvesting materials. Herein, we report on the preparation, characterization and photoactivity of a series of composites based on TiO2 and peripherally modified metallophthalocyanines: either tetrasulfonated or 4,4',4'',4'''-tetraazaphthalocyanines, with either copper(II), nickel(II) or zinc(II) as the central metal ion. Physicochemical characterization was performed using UV-Vis diffuse reflectance spectroscopy, hydrodynamic particle-size analysis, surface-area analysis using N2 adsorption-desorption measurements and thermogravimetry combined with differential scanning calorimetry. The band-gap energy values were lower for the composites with peripherally modified phthalocyanines than for the commercial TiO2 P25 or the unsubstituted zinc(II) phthalocyanine-grafted TiO2. TG-DSC results confirmed that the chemical deposition, used for the preparation of Pc/TiO2 composites, is a simple and efficient method for TiO2 surface modification, as all the Pc load was successfully grafted on TiO2. The photocatalytic potential of the Pc/TiO2 materials was assessed in the photocatalytic removal of sulfamethoxazole-a commonly used antibacterial drug of emerging ecological concern. To compare the activity of the materials in different conditions, photodegradation tests were conducted both in water and in an organic medium.

12.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077096

RESUMEN

In this study, thin chitosan-gelatin biofilms cross-linked with dialdehyde cellulose nanocrystals for dressing materials were received. Two types of dialdehyde cellulose nanocrystals from fiber (DNCL) and microcrystalline cellulose (DAMC) were obtained by periodate oxidation. An ATR-FTIR analysis confirmed the selective oxidation of cellulose nanocrystals with the creation of a carbonyl group at 1724 cm-1. A higher degree of cross-linking was obtained in chitosan-gelatin biofilms with DNCL than with DAMC. An increasing amount of added cross-linkers resulted in a decrease in the apparent density value. The chitosan-gelatin biofilms cross-linked with DNCL exhibited a higher value of roughness parameters and antioxidant activity compared with materials cross-linked with DAMC. The cross-linking process improved the oxygen permeability and anti-inflammatory properties of both measurement series. Two samples cross-linked with DNCL achieved an ideal water vapor transition rate for wound dressings, CS-Gel with 10% and 15% addition of DNCL-8.60 and 9.60 mg/cm2/h, respectively. The swelling ability and interaction with human serum albumin (HSA) were improved for biofilms cross-linked with DAMC and DNCL. Significantly, the films cross-linked with DAMC were characterized by lower toxicity. These results confirmed that chitosan-gelatin biofilms cross-linked with DNCL and DAMC had improved properties for possible use in wound dressings.


Asunto(s)
Quitosano , Nanopartículas , Vendajes , Celulosa/análogos & derivados , Celulosa/química , Quitosano/química , Gelatina/química , Humanos
13.
Pharmaceutics ; 14(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015312

RESUMEN

Due to the rapidly increasing problem of antibiotic resistance in recent years, the use of phthalocyanines as photosensitizers with their superior properties in photodynamic antimicrobial therapy (PACT) applications has become important. In this study, magnesium(II) 1,4,8,11,15,18,22,25-octakis(4-[4-butoxycarbonylphenoxy]butyloxy)phthalocyanine was used in the demetalation reaction in trifluoroacetic acid, and subsequently subjected to metalation reaction in dimethylformamide with zinc(II) acetate and bis(benzonitrile)palladium(II) chloride towards zinc(II) and palladium(II) derivatives. Three phthalocyanines, including a demetalated one as well as two metalated, in the core with zinc(II) and palladium(II) were characterized using 1D and 2D NMR spectroscopy and mass spectrometry. In addition, all macrocycles were subjected to absorption and emission studies as well as photostability tests. In a photochemical study, zinc(II) and palladium(II) phthalocyanine complexes appeared to be efficient singlet oxygen generators. There were noted quantum yields of singlet oxygen generation for zinc(II) phthalocyanine derivative in DMF and DMSO at 0.55 and 0.72, whereas for palladium(II) complex at 0.73 and 0.77, respectively. Liposomal formulations of phthalocyanine derivatives were prepared, and their activity was evaluated against a broad spectrum of antibiotic-resistant microorganisms, such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (ESBL+), Candida albicans resistant to fluconazole, C. auris, and against dermatophytes. Phthalocyanine palladium(II) complex showed the highest bactericidal activity against all antibiotic-resistant microorganisms, including reducing C. auris growth at 3.54 log.

14.
Biomed Pharmacother ; 154: 113560, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36030583

RESUMEN

Neoplastic diseases of the upper respiratory airways, as well as head and neck cancers, are a frequent cause of death and significantly affect the quality of life of both patients and survivors. As the frequency increases, new and improved treatment techniques are sought. Promising properties in this respect are expressed by a natural compound - curcumin. Along with its derivatives, it was found useful in the treatment of a series of cancers. Curcumin was found to be effective in clinical trials and in vitro, in vivo anticancer experiments. Nanoformulations (e.g., poly(lactide-co-glycolic acid)-based nanoparticles, nanoemulsions), and modifications of curcumin, as well as its combinations with other substances (e.g., catechins, cisplatin) or treatments (e.g., radiotherapy or local use in inhalation), were found to enhance the antitumor effect. This review aims to summarize the recent findings for the treatment of head and neck diseases, especially squamous cell carcinomas (HNSCCs), including drawing attention to the constant use of the misidentified Hep-2 cell line and proposing databases purposed at eliminating this problem. Moreover, this manuscript focuses on pointing out the molecular mechanisms of therapy that have been reached and emphasizing the shortcomings that still need to be addressed.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias de Cabeza y Cuello , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Curcumina/farmacología , Curcumina/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Calidad de Vida
15.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886996

RESUMEN

In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.


Asunto(s)
Proteínas Sanguíneas , Quitosano , Reactivos de Enlaces Cruzados , Gelatina , Nanopartículas , Almidón , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Quitosano/química , Quitosano/metabolismo , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Gelatina/química , Gelatina/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Almidón/análogos & derivados , Almidón/química , Almidón/metabolismo
16.
Molecules ; 27(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35889282

RESUMEN

A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-TOF, UV-VIS, and NMR spectroscopy). To obtain hybrid electroactive electrode materials, novel porphyrazines were combined with multiwalled carbon nanotubes. The electrocatalytic effect derived from cobalt(II) and iron(II) cations was evaluated. As a result, a significant decrease in the overpotential was observed compared with that obtained with bare glassy carbon (GC) or glassy carbon electrode/carbon nanotubes (GC/MWCNTs), which allowed for sensitive determination of hydrogen peroxide in neutral conditions (pH 7.4). The prepared sensor enables a linear response to H2O2 concentrations of 1-90 µM. A low detection limit of 0.18 µM and a high sensitivity of 640 µA mM-1 cm-2 were obtained. These results indicate that the obtained sensors could potentially be applied in biomedical and environmental fields.


Asunto(s)
Nanotubos de Carbono , Cobalto/química , Técnicas Electroquímicas/métodos , Electrodos , Compuestos Ferrosos , Peróxido de Hidrógeno/química , Nanotubos de Carbono/química , Ftalimidas
17.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744240

RESUMEN

Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) was obtained using the self-assembly technique and characterized using the following methods: scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), X-ray powder diffraction (XRPD), infrared spectroscopy (IR), Raman spectroscopy and thermogravimetry (TG). Additionally, physicochemical and biological tests (DPPH assay, Microtox® acute toxicity test, MTT assay) were performed to assess antioxidant properties as well as to determine the cytotoxicity of the novel material against eukaryotic (MRC-5 pd19 fibroblasts) and prokaryotic (Staphylococcus aureus, Escherichia coli, Candida albicans, Aliivibrio fischeri) cells. To determine the photocytotoxicity of the material, specific tests were carried out with and without exposure to visible light lamps (425 nm). Following the results, the TiO2-GA material could be considered an additive to dressings and rinsing suspensions for the treatment of difficult-to-heal wounds that are at risk of bacterial infections.

18.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35457986

RESUMEN

Nanoformulations are regarded as a promising tool to enable the efficient delivery of active pharmaceutical ingredients to the target site. One of the best-known and most studied nanoformulations are liposomes-spherical phospholipid bilayered nanocarriers resembling cell membranes. In order to assess the possible effect of a mixture of polyphenols on both the stability of the formulation and its biological activity, two compounds were embedded in the liposomes-(i) curcumin (CUR), (ii) a peracetylated derivative of (-)-epigallocatechin 3-O-gallate (pEGCG), and (iii) a combination of the aforementioned. The stability of the formulations was assessed in two different temperature ranges (4-8 and 20 °C) by monitoring both the particle size and their concentration. It was found that after 28 days of the experiment, the liposomes remained largely unchanged in terms of the particle size distribution, with the greatest change from 130 to 146 nm. The potential decomposition of the carried substances was evaluated using HPLC. The combined CUR and pEGCG was sensitive to temperature conditions; however its stability was greatly increased when compared to the solutions of the individual compounds alone-up to 9.67% of the initial concentration of pEGCG in liposomes after 28 days storage compared to complete decomposition within hours for the non-encapsulated sample. The potential of the prepared formulations was assessed in vitro on prostate (LNCaP) and bladder cancer (5637) cell lines, as well as on a non-cancerous human lung fibroblast cell line (MRC-5), with the highest activity of IC50 equal 15.33 ± 2.03 µM for the mixture of compounds towards the 5637 cell line.

19.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34835655

RESUMEN

Superficial and systemic fungal infections are essential problems for the modern health care system. One of the challenges is the growing resistance of fungi to classic antifungals and the constantly increasing cost of therapy. These factors force the scientific world to intensify the search for alternative and more effective methods of treatment. This paper presents an overview of new fungal inactivation methods using Photodynamic Antimicrobial Chemotherapy (PACT). The results of research on compounds from the groups of phenothiazines, xanthanes, porphyrins, chlorins, porphyrazines, and phthalocyanines are presented. An intensive search for a photosensitizer with excellent properties is currently underway. The formulation based on the existing ones is also developed by combining them with nanoparticles and common antifungal therapy. Numerous studies indicate that fungi do not form any specific defense mechanism against PACT, which deems it a promising therapeutic alternative.

20.
Molecules ; 26(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062815

RESUMEN

Aza-porphyrinoids exhibit distinct spectral properties in UV-Vis, and they are studied in applications such as photosensitizers in medicine and catalysts in technology. The use of appropriate peripheral substituents allows the modulation of their physicochemical properties. Phthalocyanine and sulfanyl porphyrazine octa-substituted with 4-(butoxycarbonyl)phenyloxy moieties were synthesized and characterized using UV-Vis and NMR spectroscopy, as well as mass spectrometry. A comparison of porphyrazine with phthalocyanine aza-porphyrinoids revealed that phthalocyanine macrocycle exhibits higher singlet oxygen generation quantum yields, reaching the value of 0.29 in DMF. After both macrocycles had been deposited on titanium dioxide nanoparticles P25, the cytotoxicities and photocytotoxicities of the prepared materials were studied using a Microtox® acute toxicity test. The highest cytotoxicity occurred after irradiation with a red light for the material composed of phthalocyanine deposited on titania nanoparticles.


Asunto(s)
Indoles/química , Nanopartículas del Metal/química , Parabenos/química , Porfirinas/química , Titanio/química , Antiinfecciosos/administración & dosificación , Antineoplásicos/administración & dosificación , Supervivencia Celular , Diseño de Fármacos , Isoindoles , Espectroscopía de Resonancia Magnética , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Solventes , Pruebas de Toxicidad , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...