Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 27(10): 298, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36336857

RESUMEN

BACKGROUND: As a fatal cardiovascular complication, coronary microembolization (CME) results in severe cardiac dysfunction and arrhythmia associated with myocardial inflammation and apoptosis. Human urinary kallidinogenase (HUK) can provide a protective function for cardiomyocytes by improving microcirculation. However, the therapeutic effects and underlying mechanisms of HUK in CME-induced myocardial injury remain unclear. AIMS: We evaluated the effect of HUK on cardiac protection in a rat model of CME and whether it could restrain myocardial inflammation and apoptosis, and alleviate CME-induced myocardial injury. METHODS: We established the CME model by injecting 42 µm inert plastic microspheres into the left ventricle of rats in advance, then the rats were randomly and equally divided into CME, CME + HUK (the dose of HUK at 0.016 PNA/kg/day), CME + HUK + LY (the dose of LY294002 at 10 mg/kg, 30 minutes before modeling), and Sham operation groups. Cardiac function, the serum levels of myocardial injury biomarkers, myocardial inflammation and apoptosis-related genes were measured; and the myocardial histopathological examination was performed at 12 h after the operation. RESULTS: The results revealed that HUK effectively reducing myocardial inflammation, apoptosis, and myocardial infarction area; and improving CME-induced cardiac injury by activating the PI3K/Akt/FoxO1 axis. In addition, these cardioprotective effects can be reduced by the PI3K specific inhibitor LY294002, suggesting that the aforementioned protective effects may be related to activation of the PI3K/Akt/FoxO1 axis. CONCLUSIONS: HUK seems to control inflammatory infiltration and cardiomyocyte apoptosis significantly to improve CME-induced cardiac injury via regulating the PI3K/Akt/FoxO1 axis.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratas , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Apoptosis , Miocitos Cardíacos , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/patología , Calicreínas/farmacología , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/farmacología , Proteínas del Tejido Nervioso
2.
Oxid Med Cell Longev ; 2022: 2633123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062187

RESUMEN

Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases with high morbidity and mortality. Numerous studies have indicated that S100A12 may has an essential role in the occurrence and development of AMI, and in-depth studies are currently lacking. The purpose of this study is to investigate the effect of S100A12 on inflammation and oxidative stress and to determine its clinical applicability in AMI. Here, AMI datasets used to explore the expression pattern of S100A12 in AMI were derived from the Gene Expression Omnibus (GEO) database. The pooled standard average deviation (SMD) was calculated to further determine S100A12 expression. The overlapping differentially expressed genes (DEGs) contained in all included datasets were recognized by the GEO2R tool. Then, functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were carried out to determine the molecular function of overlapping DEGs. Gene set enrichment analysis (GSEA) was conducted to determine unrevealed mechanisms of S100A12. Summary receiver operating characteristic (SROC) curve analysis and receiver operating characteristic (ROC) curve analysis were carried out to identify the diagnostic capabilities of S100A12. Moreover, we screened miRNAs targeting S100A12 using three online databases (miRWalk, TargetScan, and miRDB). In addition, by comprehensively using enzyme-linked immunosorbent assay (ELISA), real-time quantitative PCR (RT-qPCR), Western blotting (WB) methods, etc., we used the AC16 cells to validate the expression and underlying mechanism of S100A12. In our study, five datasets related to AMI, GSE24519, GSE60993, GSE66360, GSE97320, and GSE48060 were included; 412 overlapping DEGs were identified. Protein-protein interaction (PPI) network and functional analyses showed that S100A12 was a pivotal gene related to inflammation and oxidative stress. Then, S100A12 overexpression was identified based on the included datasets. The pooled standard average deviation (SMD) also showed that S100A12 was upregulated in AMI (SMD = 1.36, 95% CI: 0.70-2.03, p = 0.024). The SROC curve analysis result suggested that S100A12 had remarkable diagnostic ability in AMI (AUC = 0.90, 95% CI: 0.87-0.92). And nine miRNAs targeting S100A12 were also identified. Additionally, the overexpression of S100A12 was further confirmed that it maybe promote inflammation and oxidative stress in AMI through comprehensive in vitro experiments. In summary, our study suggests that overexpressed S100A12 may be a latent diagnostic biomarker and therapeutic target of AMI that induces excessive inflammation and oxidative stress. Nine miRNAs targeting S100A12 may play a crucial role in AMI, but further studies are still needed. Our work provides a positive inspiration for the in-depth study of S100A12 in AMI.


Asunto(s)
Infarto del Miocardio , Proteína S100A12 , Biomarcadores/metabolismo , Humanos , Inflamación/genética , MicroARNs/metabolismo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Estrés Oxidativo/genética , Proteína S100A12/genética
3.
Int J Biol Sci ; 15(5): 1042-1051, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31182924

RESUMEN

Coronary microembolization can cause slow or no reflow, which is one of the crucial reasons for reverse of clinical advantage from cardiac reperfusion therapy. miRNAs and apoptosis are dramatically involved in the occurrence and process of cardiovascular diseases. Fortunately, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as an appealing model for the evaluation of cardiovascular diseases. Therefore, our study was designed to explore the role of miR-30e-5p and apoptosis in a hypoxia-induced hiPSC-CM injury model. Our results showed that the expression levels of miR-30e-5p were overtly downregulated in a time-dependent manner under hypoxic conditions. Expression of miR-30e-5p was significantly downregulated after 24 hours of hypoxia, hypoxia treatment dramatically induced apoptosis. Calcium handling capability significantly decreased after 24 hours of hypoxia treatment. miR-30e-5p overexpression partially mitigated hypoxia-induced apoptosis and rescued hypoxia-induced calcium handling defects in hiPSC-CMs. The luciferase reporter assay showed that miR-30e-5p can directly target the 3'-UTR of Bim, which is an apoptosis activator and autophagy suppressor. The mRNA and protein of Bim remarkably increased after hypoxia treatment and reduced with miR-30e-5p overexpression. Moreover, downregulation of Bim mitigated hypoxia-induced apoptosis and activated autophagy. These results demonstrated that miR-30e-5p mitigated hypoxia-induced apoptosis in hiPSC-CMs at least in part via Bim suppression and subsequent autophagy activation. Our study suggested miR-30e-5p may act as a potential therapeutic target for coronary microembolization.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/fisiología , Apoptosis/genética , Apoptosis/fisiología , Autofagia/genética , Autofagia/fisiología , Proteína 11 Similar a Bcl2/genética , Western Blotting , Caspasa 3/genética , Caspasa 3/metabolismo , Células Cultivadas , Citometría de Flujo , Humanos , MicroARNs/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...