Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transgenic Res ; 32(1-2): 109-119, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36809403

RESUMEN

Novel transgenic (TG) pigs co-expressing three microbial enzymes, ß-glucanase, xylanase, and phytase, in their salivary glands were previously generated, which exhibited reduced phosphorus and nitrogen emissions and improved growth performances. In the present study, we attempted to explore the age-related change of the TG enzymic activity, the residual activity of the enzymes in the simulated gastrointestinal tract, and the effect of the transgenes on the digestion of nitrogen and phosphorus content in the fiber-rich, plant-based diets. Results showed that all the three enzymes were stably expressed over the growing and finishing periods in the F2 generation TG pigs. In simulated gastric juice, all the three enzymes exhibited excellent gastrointestinal environment adaptability. The apparent total tract digestibility of phosphorus was increased by 69.05% and 499.64%, while fecal phosphate outputs were decreased by 56.66% and 37.32%, in the TG pigs compared with the wild-type littermates fed with low non-starch polysaccharides diets and high fiber diets, respectively. Over half of available phosphorus and water-soluble phosphorus in fecal phosphorus were reduced. We also found the performance of phosphorus, calcium, and nitrogen retention rates were significantly improved, resulting in faster growth performance in TG pigs. The results indicate that TG pigs can effectively digest the high-fiber diets and exhibit good growth performance compared with wild type pigs.


Asunto(s)
6-Fitasa , Suplementos Dietéticos , Animales , Porcinos/genética , 6-Fitasa/genética , Digestión , Dieta , Tracto Gastrointestinal , Fósforo/farmacología , Glándulas Salivales , Alimentación Animal/análisis , Nitrógeno/farmacología , Dieta Vegetariana
2.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3071-3087, 2021 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-34622618

RESUMEN

In recent years, the genome editing technologies based on the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) have developed rapidly. The system can use homologous directed recombination (HDR) to achieve precise editing that it medicated, but the efficiency is extremely low, which limits its application in agriculture and biomedical fields. As an emerging genome editing technology, the CRISPR/Cas-mediated DNA base editing technologies can achieve targeted mutations of bases without generating double-strand breaks, and has higher editing efficiency and specificity compared with CRISPR/Cas-mediated HDR editing. At present, cytidine base editors (CBEs) that can mutate C to T, adenine base editors (ABEs) that can mutate A to G, and prime editors (PEs) that enable arbitrary base conversion and precise insertion and deletion of small fragments, have been developed. In addition, glycosylase base editors (GBEs) capable of transitioning from C to G and double base editors capable of editing both A and C simultaneously, have been developed. This review summarizes the development, advances, advantages and limitations of several DNA base editors. The successful applications of DNA base editing technology in biomedicine and agriculture, together with the prospects for further optimization and selection of DNA base editors, are discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Agricultura , Sistemas CRISPR-Cas/genética , ADN/genética , Tecnología
3.
Front Genet ; 12: 631071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747047

RESUMEN

We previously generated transgenic pigs with enhanced growth rate and reduced nutrient loss. However, the composition of their gut microbiome is unknown. In this study, we successfully generated EGFP marker-free transgenic (MF-TG) pigs with high expression levels of microbial ß-glucanase, xylanase, and phytase in the parotid gland. We collected intestinal contents from the ileum, cecum and colon of five MF-TG and five wild-type (WT) sows and investigated the gut microbiome of the transgenic pigs via metagenomic analysis. Results showed that the levels of probiotics, such as Lactobacillus reuteri and Streptococcus, were more abundant in the cecum of the MF-TG pigs and higher than those of WT pigs. By contrast, the levels of harmful microorganisms, such as Campylobacter, Chlamydia trachomatis, and Campylobacter fetus, and various unidentified viruses, were higher in the cecum of the WT pigs than those of the MF-TG pigs. By comparing unigenes and the eggNOG database, we found that the microorganisms in the colon of the MF-TG pigs had high fractional abundance in DNA (cytosine-5)-methyltransferase 1 and serine-type D-Ala-D-Ala carboxypeptidase, whereas the aspartate carbamoyltransferase regulatory subunit and outer membrane protein pathways were enriched in the WT pigs. Moreover, the microorganisms in the cecum of the MF-TG pigs were active in GlycosylTransferase Family 8 (GT8), Glycoside Hydrolase Family 13 (GH13), and Glycoside Hydrolase Family 32 (GH32). Furthermore, the levels of numerous carbohydrases, such as glucan 1,3-beta-glucosidase, xylan 1,4-beta-xylosidase and exo-1,3-1,4-glucanase, were higher in the cecum of the MF-TG pigs than those of the WT pigs. The results indicated that intestinal microbes can change adaptively to the secretion of transgenic enzymes, thereby forming a benign cooperation with their host. This cooperation could be beneficial for improving feed efficiency.

4.
Front Genet ; 11: 597841, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329743

RESUMEN

The current challenges facing the pork industry are to maximize feed efficiency and minimize fecal emissions. Unlike ruminants, pigs lack several digestive enzymes such as pectinase, xylanase, cellulase, ß-1.3-1.4-glucanase, and phytase which are essential to hydrolyze the cell walls of grains to release endocellular nutrients into their digestive tracts. Herein, we synthesized multiple cellulase and pectinase genes derived from lower organisms and then codon-optimized these genes to be expressed in pigs. These genes were then cloned into our previously optimized XynB (xylanase)- EsAPPA (phytase) bicistronic construct. We then successfully generated transgenic pigs that expressed the four enzymes [Pg7fn (pectinase), XynB (xylanase), EsAPPA (phytase), and TeEGI (cellulase and ß-glucanase)] using somatic cell cloning. The expression of these genes was parotid gland specific. Enzymatic assays using the saliva of these founders demonstrated high levels of phytase (2.0∼3.4 U/mL) and xylanase (0.25∼0.42 U/mL) activities, but low levels of pectinase (0.06∼0.08 U/mL) activity. These multi-transgenic pigs are expected to contribute to enhance feed utilization and reduce environmental impact.

5.
G3 (Bethesda) ; 10(2): 467-473, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31818875

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is a precise genome manipulating tool that can produce targeted gene mutations in various cells and organisms. Although CRISPR/Cas9 can efficiently generate gene knockout, the gene knock-in (KI) efficiency mediated by homology-directed repair remains low, especially for large fragment integration. In this study, we established an efficient method for the CRISPR/Cas9-mediated integration of large transgene cassette, which carries salivary gland-expressed multiple digestion enzymes (≈ 20 kbp) in CEP112 locus in pig fetal fibroblasts (PFFs). Our results showed that using an optimal homology donor with a short and a long arm yielded the best CRISPR/Cas9-mediated KI efficiency in CEP112 locus, and the targeting efficiency in CEP112 locus was higher than in ROSA26 locus. The CEP112 KI cell lines were used as nuclear donors for somatic cell nuclear transfer to create genetically modified pigs. We found that KI pig (705) successfully expressed three microbial enzymes (ß-glucanase, xylanase, and phytase) in salivary gland. This finding suggested that the CEP112 locus supports exogenous gene expression by a tissue-specific promoter. In summary, we successfully targeted CEP112 locus in pigs by using our optimal homology arm system and established a modified pig model for foreign digestion enzyme expression in the saliva.


Asunto(s)
Animales Modificados Genéticamente , Glándulas Salivales/enzimología , Porcinos/genética , 6-Fitasa/genética , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Femenino , Técnicas de Sustitución del Gen , Sitios Genéticos , Glicósido Hidrolasas/genética , Masculino , Embarazo , Transgenes
6.
Elife ; 72018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29784082

RESUMEN

In pig production, inefficient feed digestion causes excessive nutrients such as phosphorus and nitrogen to be released to the environment. To address the issue of environmental emissions, we established transgenic pigs harboring a single-copy quad-cistronic transgene and simultaneously expressing three microbial enzymes, ß-glucanase, xylanase, and phytase in the salivary glands. All the transgenic enzymes were successfully expressed, and the digestion of non-starch polysaccharides (NSPs) and phytate in the feedstuff was enhanced. Fecal nitrogen and phosphorus outputs in the transgenic pigs were reduced by 23.2-45.8%, and growth rate improved by 23.0% (gilts) and 24.4% (boars) compared with that of age-matched wild-type littermates under the same dietary treatment. The transgenic pigs showed an 11.5-14.5% improvement in feed conversion rate compared with the wild-type pigs. These findings indicate that the transgenic pigs are promising resources for improving feed efficiency and reducing environmental impact.


Asunto(s)
Alimentación Animal , Animales Modificados Genéticamente , Ambiente , Proteínas Recombinantes/metabolismo , Glándulas Salivales/enzimología , Porcinos , 6-Fitasa/genética , 6-Fitasa/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Heces/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Proteínas Recombinantes/genética
7.
Int J Biochem Cell Biol ; 99: 154-160, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29655920

RESUMEN

The main DNA repair pathways, nonhomologous end joining (NHEJ) and homology-directed repair (HDR), are complementary to each other; hence, interruptions of the NHEJ pathway can favor HDR. Improving HDR efficiency in animal primary fibroblasts can facilitate the generation of gene knock-in animals with agricultural and biomedical values by somatic cell nuclear transfer. In this study, we used siRNA to suppress the expression of Ku70 and Ku80, which are the key factors in NHEJ pathway, to investigate the effect of Ku silencing on the HDR efficiency in pig fetal fibroblasts. Down-regulation of Ku70 and Ku80 resulted in the promotion of the frequencies of multiple HDR pathways, including homologous recombination, single strand annealing, and single-stranded oligonucleotide-mediated DNA repair. We further evaluated the effects of Ku70 and Ku80 silencing on promoting HR-mediated knock-in efficiency in two porcine endogenous genes and found a significant increase in the amount of knock-in cells in Ku-silenced fibroblasts compared with control. The RNA interference strategy will benefit the generation of cell lines and organisms with precise genetic modifications.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Feto/metabolismo , Fibroblastos/metabolismo , Recombinación Homóloga , Autoantígeno Ku/metabolismo , Animales , Células Cultivadas , Feto/citología , Fibroblastos/citología , Autoantígeno Ku/antagonistas & inhibidores , Autoantígeno Ku/genética , Porcinos
8.
Yi Chuan ; 39(10): 930-938, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29070488

RESUMEN

To obtain an ideal transfection efficiency of porcine fetal fibroblasts, fluorescence activated cell sorting (FACS) was used to optimize parameters for transfection of porcine fetal fibroblasts (PFFs) with ECM? 830, NEPA 21 and Nucleofector? 2b in different conditions such as electroporation parameters, plasmid dosages and topological structures. The results show that the optimum poring pulse parameter of NEPA 21 is voltage 200 V, continuous 3 ms, interval 50 ms, 3 times, voltage attenuation range of 10%; and the transfection efficiency of Nucleofector? 2b is highest under U-023 program. Under the optimum conditions, FACS analysis demonstrates that Nucleofector? 2b and ECM? 830 have the highest transfection efficiency when transfecting 10 µg supercoiled plasmids into PFFs, and 8 µg for NEPA 21. Supercoiled plasmids show higher transfection efficiencies than linearized plasmids. Moreover, Nucleofector? 2b has the highest transfection efficiency among the three electroporation instruments. This study paves the way to generate transgenic or gene editing pigs with high efficiency.


Asunto(s)
Electroporación , Plásmidos , Transfección , Animales , Animales Modificados Genéticamente , Fibroblastos/metabolismo , Porcinos
9.
Sci Rep ; 7(1): 8943, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827551

RESUMEN

CRISPR/Cas9 is an efficient customizable nuclease to generate double-strand breaks (DSBs) in the genome. This process results in knockout of the targeted gene or knock-in of a specific DNA fragment at the targeted locus in the genome of various species. However, efficiency of knock-in mediated by homology-directed repair (HDR) pathway is substantially lower compared with the efficiency of knockout mediated by the nonhomologous end-joining (NHEJ) pathway. Suppressing NHEJ pathway or enhancing HDR pathway has been proven to enhance the nuclease-mediated knock-in efficiency in cultured cells and model organisms. We here investigated the effect of small molecules, Scr7, L755507 and resveratrol, on promoting HDR efficiency in porcine fetal fibroblasts. Results from eGFP reporter assay showed that these small molecules could increase the HDR efficiency by 2-3-fold in porcine fetal fibroblasts. When transfecting with the homologous template DNA and CRISPR/Cas9 plasmid and treating with small molecules, the rate of knock-in porcine fetal fibroblast cell lines with large DNA fragment integration could reach more than 50% of the screened cell colonies, compared with 26.1% knock-in cell lines in the DMSO-treated group. The application of small molecules offers a beneficial approach to improve the frequency of precise genetic modifications in primary somatic cells.


Asunto(s)
Fibroblastos/efectos de los fármacos , Edición Génica/métodos , Reparación del ADN por Recombinación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sistemas CRISPR-Cas , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fibroblastos/citología , Técnicas de Sustitución del Gen , Pirimidinas/farmacología , Resveratrol/farmacología , Bases de Schiff/farmacología , Sulfonamidas/farmacología , Porcinos
10.
Yi Chuan ; 39(2): 98-109, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28242597

RESUMEN

The traditional transgenic technologies, such as embryo microinjection, transposon-mediated integration, or lentiviral transfection, usually result in random insertions of the foreign DNA into the host genome, which could have various disadvantages in the establishment of transgenic animals. Therefore, a strategy for site-specific integration of a transgene is needed to generate genetically modified animals with accurate and identical genotypes. However, the efficiency for site-specific integration of transgene is very low, which is mainly caused by two issues. The first one is the low efficiency of inducing double-strand break (DSB) at the target site of host genome in the initial process. The second one is the low efficiency of homologous recombination repair (HDR) between the target site and the donor plasmid carrying homologous arm and foreign genes. HDR is the most common mechanism for site-specific integration of a transgene. DSBs can stimulate DNA repair mainly by two competitive mechanisms, HDR and nonhomologous end joining (NHEJ). Hence, activation of HDR or inhibition of NHEJ can promote the HDR in the integration processes, thereby optimizing a specific targeting of the transgene. In this review, we summarize the recent advances in strategies for improving the site-specific integration of foreign transgene in transgenic technologies.


Asunto(s)
Reparación del ADN por Recombinación , Transgenes , Animales , Animales Modificados Genéticamente , Roturas del ADN de Doble Cadena
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...