Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2310749, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308118

RESUMEN

The unfavorable morphology and high crystallization temperature (Tc ) of inorganic perovskites pose a significant challenge to their widespread application in photovoltaics. In this study, an effective approach is proposed to enhance the morphology of cesium lead triiodide (CsPbI3 ) while lowering its Tc . By introducing dimethylammonium acetate into the perovskite precursor solution, a rapid nucleation stage is facilitated, and significantly enhances the crystal growth of the intermediate phase at low annealing temperatures, followed by a slow crystal growth stage at higher annealing temperatures. This results in a uniform and dense morphology in CsPbI3 perovskite films with enhanced crystallinity, simultaneously reducing the Tc from 200 to 150 °C. Applying this approach in positive-intrinsic-negative (p-i-n) inverted cells yields a high power conversion efficiency of 19.23%. Importantly, these cells exhibit significantly enhanced stability, even under stress at 85 °C.

2.
Adv Mater ; 36(15): e2309487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174652

RESUMEN

Electronic band structure engineering of metal-halide perovskites (MHP) lies at the core of fundamental materials research and photovoltaic applications. However, reconfiguring the band structures in MHP for optimized electronic properties remains challenging. This article reports a generic strategy for constructing near-edge states to improve carrier properties, leading to enhanced device performances. The near-edge states are designed around the valence band edge using theoretical prediction and constructed through tailored material engineering. These states are experimentally revealed with activation energies of around 23 milli-electron volts by temperature-dependent time-resolved spectroscopy. Such small activation energies enable prolonged carrier lifetime with efficient carrier transition dynamics and low non-radiative recombination losses, as corroborated by the millisecond lifetimes of microwave conductivity. By constructing near-edge states in positive-intrinsic-negative inverted cells, a champion efficiency of 25.4% (25.0% certified) for a 0.07-cm2 cell and 23.6% (22.7% certified) for a 1-cm2 cell is achieved. The most stable encapsulated cell retains 90% of its initial efficiency after 1100 h of maximum power point tracking under one sun illumination (100 mW cm-2) at 65 °C in ambient air.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...