Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Res ; 32(5): 461-476, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35115667

RESUMEN

Both opioids and nonsteroidal anti-inflammatory drugs (NSAIDS) produce deleterious side effects and fail to provide sustained relief in patients with chronic inflammatory pain. Peripheral neuroinflammation (PN) is critical for initiation and development of inflammatory pain. A better understanding of molecular mechanisms underlying PN would facilitate the discovery of new analgesic targets and the development of new therapeutics. Emerging evidence suggests that peripheral sensory neurons are not only responders to painful stimuli, but are also actively engaged in inflammation and immunity, whereas the intrinsic regulatory mechanism is poorly understood. Here we report the expression of proton-selective ion channel Hv1 in peripheral sensory neurons in rodents and humans, which was previously shown as selectively expressed in microglia in mammalian central nervous system. Neuronal Hv1 was up-regulated by PN or depolarizing stimulation, which in turn aggravates inflammation and nociception. Inhibiting neuronal Hv1 genetically or by a newly discovered selective inhibitor YHV98-4 reduced intracellular alkalization and ROS production in inflammatory pain, mitigated the imbalance in downstream SHP-1-pAKT signaling, and also diminished pro-inflammatory chemokine release to alleviate nociception and morphine-induced hyperalgesia and tolerance. Thus, our data reveal neuronal Hv1 as a novel target in analgesia strategy and managing opioids-related side effects.


Asunto(s)
Analgésicos Opioides , Dolor , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mamíferos , Microglía/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo
2.
Toxicol In Vitro ; 69: 104967, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32805375

RESUMEN

With the increased use of nanomaterials and increased exposure of humans to various nanomaterials, the potential health effects of nanomaterials cannot be ignored. The hepatotoxicity of cobalt nanoparticles (Nano-Co) is largely unknown and the underlying mechanisms remain obscure. The purpose of this study was to exam the hepatotoxicity induced by Nano-Co and its potential mechanisms. Our results showed that exposure of human fetal hepatocytes L02 to Nano-Co caused a dose- and a time-dependent cytotoxicity. Besides the generation of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS), exposure to Nano-Co also caused activation of NOD-like receptor protein 3 (NLRP3) inflammasome in hepatocytes. After silencing NLRP3, one component of NLRP3 inflammasome, expression by siRNA strategy, we found that upregulation of NLRP3-related proteins was abolished in hepatocytes exposed to Nano-Co. Using antioxidants to scavenge ROS and mtROS, we demonstrated that Nano-Co-induced mtROS generation was related to Nano-Co-induced NLRP3 inflammasome activation. Our findings demonstrated that Nano-Co exposure may promote intracellular oxidative stress damage, and mtROS may mediate the activation of NLRP3 inflammasome in hepatocytes exposed to Nano-Co, suggesting an important role of ROS/NLRP3 pathway in Nano-Co-induced hepatotoxicity. These results provide scientific insights into the hepatotoxicity of Nano-Co and a basis for the prevention and treatment of Nano-Co-induced cytotoxicity.


Asunto(s)
Cobalto/toxicidad , Hepatocitos/efectos de los fármacos , Inflamasomas/metabolismo , Nanopartículas del Metal/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Línea Celular , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
3.
J Med Chem ; 63(7): 3665-3677, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32162512

RESUMEN

TWIK-related K+ (TREK) channels are potential analgesic targets. However, selective activators for TREK with both defined action mechanism and analgesic ability for chronic pain have been lacking. Here, we report (1S,3R)-3-((4-(6-methylbenzo[d]thiazol-2-yl)phenyl)carbamoyl)cyclopentane-1-carboxylic acid (C3001a), a selective activator for TREK, against other two-pore domain K+ (K2P) channels. C3001a binds to the cryptic binding site formed by P1 and TM4 in TREK-1, as suggested by computational modeling and experimental analysis. Furthermore, we identify the carboxyl group of C3001a as a structural determinant for binding to TREK-1/2 and the key residue that defines the subtype selectivity of C3001a. C3001a targets TREK channels in the peripheral nervous system to reduce the excitability of nociceptive neurons. In neuropathic pain, C3001a alleviated spontaneous pain and cold hyperalgesia. In a mouse model of acute pancreatitis, C3001a alleviated mechanical allodynia and inflammation. Together, C3001a represents a lead compound which could advance the rational design of peripherally acting analgesics targeting K2P channels without opioid-like adverse effects.


Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Benzotiazoles/uso terapéutico , Inflamación Neurogénica/tratamiento farmacológico , Dolor/tratamiento farmacológico , Canales de Potasio de Dominio Poro en Tándem/agonistas , Analgésicos/metabolismo , Analgésicos/farmacocinética , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Benzotiazoles/metabolismo , Benzotiazoles/farmacocinética , Sitios de Unión , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estructura Molecular , Pancreatitis/tratamiento farmacológico , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Unión Proteica , Ratas Sprague-Dawley , Relación Estructura-Actividad
4.
Sci Transl Med ; 11(519)2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748231

RESUMEN

The paucity of selective agonists for TWIK-related acid-sensitive K+ 3 (TASK-3) channel, a member of two-pore domain K+ (K2P) channels, has contributed to our limited understanding of its biological functions. By targeting a druggable transmembrane cavity using a structure-based drug design approach, we discovered a biguanide compound, CHET3, as a highly selective allosteric activator for TASK-3-containing K2P channels, including TASK-3 homomers and TASK-3/TASK-1 heteromers. CHET3 displayed potent analgesic effects in vivo in a variety of acute and chronic pain models in rodents that could be abolished pharmacologically or by genetic ablation of TASK-3. We further found that TASK-3-containing channels anatomically define a unique population of small-sized, transient receptor potential cation channel subfamily M member 8 (TRPM8)-, transient receptor potential cation channel subfamily V member 1 (TRPV1)-, or tyrosine hydroxylase (TH)-positive nociceptive sensory neurons and functionally regulate their membrane excitability, supporting CHET3 analgesic effects in thermal hyperalgesia and mechanical allodynia under chronic pain. Overall, our proof-of-concept study reveals TASK-3-containing K2P channels as a druggable target for treating pain.


Asunto(s)
Analgésicos/farmacología , Activación del Canal Iónico , Canales de Potasio/metabolismo , Analgésicos/química , Animales , Biguanidas/química , Biguanidas/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Ratones Noqueados , Nocicepción/efectos de los fármacos , Canales de Potasio/deficiencia , Ratas , Reproducibilidad de los Resultados , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Relación Estructura-Actividad
5.
Neuropsychopharmacology ; 30(2): 261-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15578005

RESUMEN

l-Stepholidine (SPD) is a tetrahydroprotoberberine alkaloid and a mixed dopamine D1 agonist/D2 antagonist. Preliminary clinical trials suggest that SPD improves both positive and negative symptoms of schizophrenia without producing significant extrapyramidal side effects. Here, we report that SPD mimics the effect of the atypical antipsychotic drug clozapine, preferentially increasing Fos expression in corticolimbic areas. Thus, at 10 mg/kg (i.p.), SPD induced Fos expression in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and lateral septal nucleus (LSN) without significantly affecting the dorsolateral striatum (DLSt). At higher doses (20-40 mg/kg), SPD also increased Fos expression in the DLSt. The increase, however, was less pronounced than the increase seen in the NAc. Within the NAc, SPD also induced more Fos expression in the shell than in the core. In all subcortical areas examined, the Fos expression induced by SPD was mimicked by the D2 antagonist sulpiride and reversed by the D2 agonist quinpirole, suggesting that the effect is due to blockade of D2-like receptors by SPD. In the mPFC, however, the effect was not mimicked by sulpride or reversed by quinpirole. It was also not mimicked by the D1 agonist SKF38393 or SKF38393 plus sulpride, and not reversed by the D1 antagonist SCH23390. These results suggest that, in the mPFC, SPD may induce Fos expression through a non-DA mechanism. Whether the mechanism involves an interaction of SPD with other neurotransmitters such as 5-HT and norepinephrine remains to be determined.


Asunto(s)
Antipsicóticos/farmacología , Berberina/análogos & derivados , Berberina/farmacología , Clozapina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Haloperidol/farmacología , Prosencéfalo/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Animales , Antagonistas de los Receptores de Dopamina D2 , Inmunohistoquímica , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Prosencéfalo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D2/agonistas , Núcleos Septales/efectos de los fármacos , Núcleos Septales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...