Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(21): 8216-8226, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817572

RESUMEN

Understanding the bonding nature between actinides and main-group elements remains a key challenge in actinide chemistry due to the involvement of f orbitals. Herein, we propose a unique "aromaticity-assisted multiconfiguration" (AAM) model to elucidate the bonding nature in actinide nitrides (An2N2, An = Ac, Th, Pa, U). Each planar four-membered An2N2 with equivalent An-N bonds possesses four delocalized π electrons and four delocalized σ electrons, forming a new family of double Möbius aromaticity that contributes to the molecular stability. The unprecedented aromaticity further supports actinide nitrides to exhibit multiconfigurational characters, where the unpaired electrons (2, 4 or 6 in naked Th2N2, Pa2N2 or U2N2, respectively) either are spin-free and localized on metal centres or form metal-ligand bonds. High-level multiconfigurational computations confirm an open-shell singlet ground state for actinide nitrides, with small energy gaps to high spin states. This is consistent with the antiferromagnetic nature observed experimentally in uranium nitrides. The novel AAM bonding model can be authenticated in both experimentally identified compounds containing a U2N2 motif and other theoretically modelled An2N2 clusters and is thus expected to be a general chemical bonding pattern between actinides and main-group elements.

2.
J Comput Chem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757907

RESUMEN

Bandgap is a key property that determines electrical and optical properties in materials. Modulating the bandgap thus is critical in developing novel materials particularly semiconductors with improved features. This study examines the bandgap, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) energy level trends in a metal organic framework, metal-organic framework 5 (MOF-5), as a function of Hammett substituent effect (with the constant σm in the meta-position of the benzene ring) and solvent dielectric effect (with the constant ε). Specifically, experimental design and response surface methodologies helped to assess the significance of trends and correlations between these molecular properties with σm and ε. While the HOMO and LUMO decrease with increasing σm, the LUMO exhibits greater sensitivity to the substituent's electron withdrawing capability. The relative difference in these trends helps to explain why the bandgap tends to decrease with increasing σm.

3.
Inorg Chem ; 63(10): 4716-4724, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38417153

RESUMEN

Structures are of fundamental importance for diverse studies of lithium polysulfide clusters, which govern the performance of lithium-sulfur batteries. The ring-like geometries were regarded as the most stable structures, but their physical origin remains elusive. In this work, we systematically explored the minimal structures of Li2Sx (x = 4-8) clusters to uncover the driving force for their conformational preferences. All low-lying isomers were generated by performing global searches using the ABCluster program, and the ionic nature of the Li···S interactions was evidenced with the energy decomposition analysis based on the block-localized wave function (BLW-ED) approach and further confirmed with the quantum theory of atoms in molecule (QTAIM). By analysis of the contributions of various energy components to the relative stability with the references of the lowest-lying isomers, the controlling factor for isomer preferences was found to be the polarization interaction. Notably, although the electrostatic interaction dominates the binding energies, it contributes favorably to the relative stabilities of most isomers. The Li+···Li+ distance is identified as the key geometrical parameter that correlates with the strength of the polarization of the Sx2- fragment imposed by the Li+ cations. Further BLW-ED analyses reveal that the cooperativity of the Li+ cations primarily determines the relative strength of the polarization.

4.
Chem Mater ; 35(23): 9857-9878, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107191

RESUMEN

Isoreticularity in metal organic frameworks (MOFs) allows the design of the framework structure and tailoring the pore aperture at the molecular level. The optimal pore volume, long-range order of framework expansion, and crystallite size (grain size) could enable improving Li-ion conduction, thereby providing a unique opportunity to design high-performance solid and quasi-solid electrolytes. However, definitive understanding of the pore aperture, framework expansion, and crystallite size on the Li-ion conduction and its mechanism in MOFs remains at the exploratory stage. Among the different MOF subfamilies, Li-MOFs created by the isoreticular framework expansion using dicarboxylates of benzene, naphthalene, and biphenyl building blocks emerge as low-density porous solids with exceptional thermal stability to study the solid-state Li+ transport mechanisms. Herein, we report the subtle effect of the isoreticularity in Li-MOFs on the performance of solid and quasi-solid-state Li+ conduction, providing new insight into Li+ transport mechanisms in MOFs for the first time. Our experimental and computational results show that the reticular design on an isostructural extended framework structure with the optimal pore aperture and crystallite size can influence the Li+ conductivity, exhibiting comparable ionic conductivities to solid polymer electrolytes at room temperature. Aligning with the computational studies, our experimental absorption spectral traces of solid electrolytes prepared by encapsulating lithium salt (LiClO4) and the plasticizer (ethylene carbonate) with Li-MOFs confirm the participation of the free and bound states of Li+ in a pore filling-driven ion conduction mechanism. We postulate that porous channels of Li-MOFs aid free Li+ to move through the pores via a vehicle-type mechanism, in which the pore-filled plasticizer acts as a carrier for mobile Li+ while the framework's functional sites transport the bound state of Li+ via an ion hopping mechanism from one crystallite site to another. Our computational studies performed on the Li+ conduction pathway validated the postulated pore filling mechanism and confirmed the involvement of bridging complexes, formed by binding Li+ onto the framework's functional sites as well as to the pore-filled ethylene carbonates. The Li+ diffusion energy barrier profiles along with the respective conformational changes during the diffusion of Li+ in solid electrolytes prepared from Li-BDC MOF and Li-NDC MOF strongly support the cooperative movement of Li+ ions via ion hopping along the framework's edges and vehicle-type transfer, involving the pore-filled plasticizer. Our findings suggest that cooperative function of the optimal pore volume, framework expansion, and crystallite size play a unique role in Li-ion conduction, thereby providing design guidelines for the low-density solid and quasi-solid electrolytes.

5.
Chemistry ; 29(58): e202301862, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37506171

RESUMEN

There have been remarkable advances in the syntheses and applications of groups 13 and 14 homonuclear ethene analogues. However, successes are largely limited to aryl- and/or silyl-substituted species. Analogues bearing two or more heteroatoms are still scarce. In this work, the block-localized wavefunction (BLW) method at the density functional theory (DFT) level was employed to study dialumene and disilene bearing two amino substituents whose optimal geometries exhibit significantly stretched central M=M (M=Al or Si) double bonds compared with aryl- and/or silyl-substituted species. Computational analyses showed that the repulsion between the lone electron pairs of amino substituents and M=M π bond plays a critical role in the elongation of the M=M bonds. Evidently, replacing the substituent groups -NH2 with -BH2 can enhance the planarity and shorten the central double bonds due to the absence of lone pair electrons in BH2 .

6.
Phys Chem Chem Phys ; 25(22): 15371-15381, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37227190

RESUMEN

To explore the binding energy profiles and elucidate the bonding nature in counter-intuitive anion⋯anion coinage bonds (CiBs), thirty-one complexes were constructed, and the inter-anion CiBs were studied theoretically. The metastability was evidenced by the characteristic potential wells in six cases, demonstrating that anions [Au(CN)4]-, [Ag(CN)2]- and [AuO]- are appropriate building blocks for CiBs. The kinetic stability was further supported by ab initio molecular dynamics (AIMD) simulations and the analyses based on the local vibrational mode and quantum theory of atoms in molecules (QTAIM) methods. The anion⋯anion CiBs in the dimers of [AuCl4]- and [Au(CN)4]- previously observed in condensed phases were confirmed to be thoroughly repulsive under vacuum, but turned attractive in the crystal environment which was simulated using the solvation model based on density (SMD). However, the intrinsic strength of the inter-anion bonding is barely variated by the environment, as it is the combination of the inter-anion interaction and the environment effect that stabilizes the anion pairs. The block-localized wavefunction (BLW) method and its corresponding energy decomposition (BLW-ED) approach were further employed aiming at a chemically meaningful explanation for these counterintuitive phenomena. By inspecting the profiles of energy components, we identified the vital distinction between inter-anion CiBs and conventional non-covalent interactions lying in the electrostatic interaction, which variates nonmonotonically in the inter-anion complexes. The electrostatic interaction also dominates the depth of potential wells, which is commonly used to evaluate the kinetic stability, while Pauli exchange repulsion is the most repulsive factor preventing the formation of anion adducts. The importance of the Pauli exchange repulsion was further highlighted by comparing cases with and without metastability, in which the absence of a potential well is solely caused by the enhancement of the Pauli exchange repulsion.

7.
J Am Chem Soc ; 145(14): 8107-8113, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36977280

RESUMEN

The Möbius rule predicts that a planar four-membered metallacycle can be aromatic with four mobile electrons, but such a simple ring has escaped recognition because it usually favors Hückel anti-aromaticity. Here, we report that a quasi-square four-membered actinide compound (Pa2B2) is doubly Möbius aromatic. Chemical bonding analyses reveal that this diboron protactinium molecule has four delocalized π electrons in addition to four delocalized σ electrons, satisfying the 4n Möbius rule for both σ and π components. Energetically, the block-localized wavefunction method, which is the simplest variant of ab initio valence bond theory, shows that the delocalization energy for the π and σ electrons reaches up to 65.0 and 72.3 kcal/mol, respectively, while the extra cyclic resonance energy (ECRE) amounts to 45 kcal/mol. The large positive ECRE values strongly confirm the unprecedented double Möbius aromaticity in Pa2B2. We anticipate that this new type of aromatic molecule can enrich the concept of Möbius aromaticity and open a new avenue for actinide compounds.

8.
Chemistry ; 29(19): e202203817, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36624078

RESUMEN

Given the extraordinary versatility in chemical reactions and applications, boron compounds have gained increasing attentions in the past two decades. One of the remarkable advances is the unprecedented preparation of unsaturated boron species. Notably, Braunschweig et al. found that the cyclic (alkyl)(amino) carbenes (CAACs) stabilized diboron molecules (CAAC)2 B2 (SR)2 host unpaired electrons and exist in the 90°-twisted diradical form, while other analogues, such as N-heterocyclic carbenes (NHCs), stabilized diboron molecules prefer a conventional B=B double bond. Since previous studies recognized the differences in the steric effect between CAAC and NHC carbenes, here we focused on the role of thiol substituents in (CAAC)2 B2 (SR)2 by gradually localizing involved electrons. The co-planarity of the thiol groups and the consequent captodative effect were found to be the culprit for the 90°-twisted diradical form of (CAAC)2 B2 (SR)2 . Computational analyses identified two forces contributing to the π electron movements. One is the "push" effect of lone pairs on the sulfur atoms which boosts the π electron delocalization between the BB center and CAACs. The other is the π electron delocalization within each (CAAC)B(SR) fragment where the pull effect originates from the π electron withdrawal by CAACs. There are two such independent and orthogonal push-pull channels which function mainly in individual (CAAC)B(SR) fragments. This enhanced π push-pull effect in the triplet state facilitates the electronic excitation in (CAAC)2 B2 (SR)2 by reducing the singlet-triplet gap.

9.
J Comput Chem ; 44(3): 138-148, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35147229

RESUMEN

Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5-8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl- , Br- and I- ), and remarkable binding strengths up to -294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.

10.
Chemistry ; 29(16): e202203558, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36538660

RESUMEN

Cryptands utilize inside CH or NH groups as hydrogen bond (H-bond) donors to capture anions such as halides. In this work, the nature and selectivity of confined hydrogen bonds inside cryptands were computationally analyzed with the energy decomposition scheme based on the block-localized wavefunction method (BLW-ED), aiming at an elucidation of governing factors in the binding between cryptands and anions. It was revealed that the intrinsic strengths of inward hydrogen bonds are dominated by the electrostatic attraction, while the anion preferences (selectivity) of inner CH and NH hydrogen bonds are governed by the Pauli exchange repulsion and electrostatic interaction, respectively. Typical conformers of cages are classified into two groups, including the C3(h) -symmetrical conformers, in which all halide anions are located near the centroids of cages, and the "semi-open" conformers, which exhibit shifted bonding sites for different halide anions. Accordingly, the difference in governing factors of selectivity is attributed to either the rigidity of cages or the binding site of anions for these two groups. In details, the C3 conformers of NH cryptands can be enlarged more remarkably than the C3(h) -symmetrical conformers of CH cryptands as the size of anion (ionic radius) increases, resulting in the relaxation of the Pauli repulsion and a dramatic reduction in electrostatic attraction, which eventually rules the selectivity of NH cryptands for halide anions. By contrary, the CH cryptands are more rigid and cannot effectively reduce the Pauli repulsion, which subsequently governs the anion preference. Unlike C3 conformers whose rigidity determines the selectivity, semi-open conformers exhibit different binding sites for different anions. From F- to I- , the bonding site shifts toward the outside end of the pocket inside the semi-open NH cryptand, leading to the significant reduction of the electrostatic interaction that dominates the anion preference. Differently, binding sites are much less affected by the size of anion inside the semi-open CH cryptand, in which the Pauli exchange repulsion remains the key factor for the selectivity of inner hydrogen bonds.

12.
Phys Chem Chem Phys ; 24(38): 23420-23426, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36128880

RESUMEN

It has been generally recognized that the α-agostic interaction (M⋯H-C) in transition metal carbene compounds LnMCHR (R = H, Me etc.) can be interpreted with a double metal-carbon bonding model. This bonding model involves the reorganization of the σ component, which can be illustrated in terms of three-center two-electron (3c-2e) M-H-C covalent bond as in transition metal alkyl compounds. Herein, we propose an alternative partial triple metal-carbon bonding model to elucidate the agostic interaction in LnMCHR. Apart from the well-defined σ and π bonds, there exists a seemingly weak but decisive third force, namely the πCHR→dM bonding between an occupied π-like symmetric CHR orbital and a vacant metal d orbital, which is the true origin of the α-agostic effect. This partial triple bonding model is authenticated on both Fischer- and Schrock-type carbenes by an ab initio valence bond (VB) method or the block-localized wavefunction (BLW) method, which has the capability to quantify this notable π bonding and further demonstrate its geometric, energetic and spectral impacts on agostic transition metal carbene compounds. We also show that ancillary ligands can modulate the πCHR→dM bonding through electronic and steric effects.

13.
J Mol Model ; 28(9): 274, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36006511

RESUMEN

Noncovalent interactions are ubiquitous and have been well recognized in chemistry, biology and material science. Yet, there are still recurring controversies over their natures, due to the wide range of noncovalent interaction terms. In this Essay, we employed the Valence Bond (VB) methods to address two types of interactions which recently have drawn intensive attention, i.e., the halogen bonding and the CH‧‧‧HC dihydrogen bonding. The VB methods have the advantage of interpreting molecular structures and properties in the term of electron-localized Lewis (resonance) states (structures), which thereby shed specific light on the alteration of the bonding patterns. Due to the electron localization nature of Lewis states, it is possible to define individually and measure both polarization and charge transfer effects which have different physical origins. We demonstrated that both the ab initio VB method and the block-localized wavefunction (BLW) method can provide consistent pictures for halogen bonding systems, where strong Lewis bases NH3, H2O and NMe3 partake as the halogen bond acceptors, and the halogen bond donors include dihalogen molecules and XNO2 (X = Cl, Br, I). Based on the structural, spectral, and energetic changes, we confirm the remarkable roles of charge transfer in these halogen bonding complexes. Although the weak C-H∙∙∙H-C interactions in alkane dimers and graphene sheets are thought to involve dispersion only, we show that this term embeds delicate yet important charge transfer, bond reorganization and polarization interactions.


Asunto(s)
Electrones , Halógenos , Halógenos/química
14.
Angew Chem Int Ed Engl ; 61(37): e202209658, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35856937

RESUMEN

A unique thorium-thorium bond was observed in the crystalline tri-thorium cluster [{Th(η8 -C8 H8 )(µ3 -Cl)2 }3 {K(THF)2 }2 ]∞ , though the claim of σ-aromaticity for Th3 bond has been questioned. Herein, a new type of core-shell syngenetic bonding model is proposed to describe the stability of this tri-thorium cluster. The model involves a 3c-2e bond in the Th3 core and a multicentered (ThCl2 )3 charge-shift bond with 12 electrons scattering along the outer shell. To differentiate the strengths of the 3c-2e bond and the charge-shift bond, the block-localized wavefunction (BLW) method which falls into the ab initio valence bond (VB) theory is employed to construct a strictly core/shell localized state and its contributing covalent resonance structure for the Th3 core bond. By comparing with the σ-aromatic H3 + and nonaromatic Li3 + , the computed resonance energies and extra cyclic resonance energies confirm that this Th3 core bond is truly delocalized and σ-aromatic.

15.
Inorg Chem ; 61(6): 2892-2902, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35104122

RESUMEN

The chemical bond between a transition metal and a methyl group (M-CH3) is typically defined as a single covalent bond, which is of fundamental significance and general interest in understanding the structural properties and reactivity of transition metal alkyl compounds. Herein, we demonstrate that the M-CH3 bonding involves varying σ and π components and thus should be best described in terms of the partial double M═CH3 bond. The often-neglected π bonding stems from an occupied π-symmetric orbital of the methyl group comprising all three C-H σ bonds (but one C-H' contributes more than the other two) and a vacant low-lying metal d(π) orbital, and is associated with the intramolecular C-H'···M agostic effect (i.e., an acute M-C-H' angle and a short H'···M distance), whose origin is still controversial. We quantify the geometric and energetic impacts of the π interaction involved in the M-CH3 bond by explicitly computing the intramolecular πCH' → dM interaction with the ab initio valence bond (VB) theory. Our computations of the ligand-free [TiCH3]3+ and a series of metallocene catalysts provide a direct proof for the presence of the π bonding in M-CH3 bonds, which is the cause for the agostic effect. The partial double M═CH3 bonding model is not only validated by a range of bonding analyses including VB self-consistent field (VBSCF)-based energy decomposition and quantum theory of atoms in molecules (QTAIM) but also authenticated by the specific activity of double M═CH3 bonds in the C-H activation and olefin insertion. More importantly, the σ bond gradually switches from a classical covalent bond to a novel charge-shift bond with the π bonding becoming increasingly significant. We anticipate that the recognition of the π interaction between electrophilic metal centers and C-H bonds can benefit the understanding of the nature of metal-carbon bonds in transition metal ethyl, alkyl, and carbene compounds.

16.
ACS Appl Mater Interfaces ; 14(1): 1002-1014, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935336

RESUMEN

Developing efficient and inexpensive main group catalysts for CO2 conversion and utilization has attracted increasing attention, as the conversion process would be both economical and environmentally benign. Here, based on the main group element Al, we designed several heterogeneous frustrated Lewis acid/base pair (FLP) catalysts and performed extensive first-principles calculations for the hydrogenation of CO2. These catalysts, including Al@N-Gr-1, Al@N-Gr-2, and Al@C2N, are composed of a single Al atom and two-dimensional (2D) N-doped carbon-based materials to form frustrated Al/C or Al/N Lewis acid/base pairs, which are all predicted to have high reactivity to absorb and activate hydrogen (H2). Compared with Al@N-Gr-1, both Al@N-Gr-2 and Al@C2N, especially Al@N-Gr-2, containing Al/N Lewis pairs exhibit better catalytic activity for CO2 hydrogenation with lower activation energies. CO2 hydrogenation on the three catalysts prefers to go through a three-step mechanism, i.e., the heterolytic dissociation of H2, followed by the transfer of the hydride near Al to CO2, and finally the activation of a second H2 molecule. Other IIIA group element (B and Ga)-embedded N-Gr-2 materials (B@N-Gr-2 and Ga@N-Gr-2) were also explored and compared. Both Al@N-Gr-2 and Ga@N-Gr-2 show higher catalytic activity for CO2 hydrogenation to HCOOH than B@N-Gr-2. However, the CO2 hydrogenation path on Ga@N-Gr-2 tends to follow a two-step mechanism, including H2 dissociation and subsequent hydrogen transfer. The present study provides a potential solution for CO2 hydrogenation by designing novel and effective FLP catalysts based on main group elements.

17.
ACS Omega ; 6(47): 31971-31981, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34870020

RESUMEN

To explore alternative approaches to the CO2 reduction to formate and provide an insight into the spin state effect on the CO2 reduction, we theoretically designed a kind of low-valence iron(I) model complex, whose doublet, quartet, and sextet states are denoted as 2 Fe(I), 4 Fe(I), and 6 Fe(I), respectively. This complex is featured with an iron(I) center, which bonds to a 1,2-ethanediamine (en) and a 2-hydroxy-biphenyl group. Reaction mechanisms for the CO2 reduction to formate catalyzed by this iron(I) model complex were explored using density functional theory (DFT) computations. Studies showed that the univalent iron(I) compound can efficiently fix and activate a CO2 molecule, whereas its oxidized forms with trivalent iron(III) or bivalent iron(II) cannot activate CO2. For the iron(I) compound, it was found that the lowest spin state 2 Fe(I) is the most favorable for the CO2 reduction as the reactions barriers involving 2 Fe(I), 4 Fe(I), and 6 Fe(I) are 25.6, 37.2, and 35.9 kcal/mol, respectively. Yet, a photosensitizer-free visible-light-mediated high-low spin shift from 4 Fe(I) and 6 Fe(I) to 2 Fe(I) is likely through the reverse intersystem crossing (RIC) because the 4 Fe(I) and 6 Fe(I) compounds have strong absorption in the visible-light range. Notably, the synergistic interaction between the hydrogen bonding from the auxiliary hydroxyl group in the 2-hydroxy-biphenyl moiety to CO2 and an intermediate five-membered ring promotes the proton transfer, leading to the formation of the -COOH moiety from CO2 and the Fe-O bond. With the addition of H2, one H2 molecule is split by the Fe-O bond and thus serves as H atom sources for both the CO2 reduction and the recovery of the auxiliary hydroxyl group. The present theoretical study provides a novel solution for the challenging CO2 reduction, which calls for further experimental verifications.

18.
J Chem Phys ; 155(23): 234302, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34937369

RESUMEN

Inter-anion hydrogen and halogen bonds have emerged as counterintuitive linkers and inspired us to expand the range of this unconventional bonding pattern. Here, the inter-anion chalcogen bond (IAChB) was proposed and theoretically analyzed in a series of complexes formed by negatively charged bidentate chalcogen bond donors with chloride anions. The kinetic stability of IAChB was evidenced by the minima on binding energy profiles and further supported by ab initio molecular dynamic simulations. The block-localized wave function (BLW) method and its subsequent energy decomposition (BLW-ED) approach were employed to elucidate the physical origin of IAChB. While all other energy components vary monotonically as anions get together, the electrostatic interaction behaves exceptionally as it experiences a Coulombic repulsion barrier. Before reaching the barrier, the electrostatic repulsion increases with the shortening Ch⋯Cl- distance as expected from classical electrostatics. However, after passing the barrier, the electrostatic repulsion decreases with the Ch⋯Cl- distance shortening and subsequently turns into the most favorable trend among all energy terms at short ranges, representing a dominating force for the kinetic stability of inter-anions. For comparison, all energy components exhibit the same trends and vary monotonically in the conventional counterparts where donors are neutral. By comparing inter-anions and their conventional counterparts, we found that only the electrostatic energy term is affected by the extra negative charge. Remarkably, the distinctive (nonmonotonic) electrostatic energy profiles were reproduced using quantum mechanical-based atomic multipoles, suggesting that the crucial electrostatic interaction in IAChB can be rationalized within the classical electrostatic theory just like conventional non-covalent interactions.

19.
J Phys Chem A ; 125(48): 10428-10438, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34818021

RESUMEN

Interanion hydrogen bonding (IAHB) and halogen bonding (IAXB) have emerged as a counterintuitive linker in a range of fascinating applications. Despite the overall repulsive (positive) binding energy, anions are trapped in a local minimum with its corresponding transition state (TS) preventing dissociation. In other words, the adduct of anions is metastable. Seemingly, the electrostatic paradigm and force field description of hydrogen/halogen bonding (HB/XB) are challenged, because of the preconceived Coulombic repulsion. Aiming at an insightful understanding of these interanion phenomena, we employed the energy decomposition approach based on the block-localized wavefunction method (BLW-ED) to investigate a series of exemplary interanion complexes. As expected, the key distinction from the conventional HB/XB lies in the electrostatic interaction, which is not increasingly repulsive as anions gradually approach to each other. Rather, there is a Coulombic barrier at a certain point. After this point, the electrostatic repulsion diminishes with the decreasing distance between anions. Differently, other energy components vary monotonically just like in conventional cases. The nonmonotonic characteristic of the electrostatic interaction in interanion complexes was reproduced using the multipole expansion in AMOEBA polarizable force field in which the state-specified atomic multipoles were adopted. This suggests that the nonmonotonicity can be well interpreted by classical electrostatic theory and there is no conceptual difference between conventional HB/XB and IAHB/IAXB. The stability of IAHB/IAXB depends on the competition between the local attractive HB/XB and the global Coulombic repulsion of net charges, though there is cooperativity between these two contrasting forces. This concise model was supported by the attractive IAHB/IAXB in modified molecular capsules, which exhibit strong quadruple HB/XBs and a considerable distance between charged substituents.

20.
Phys Chem Chem Phys ; 23(38): 21677-21689, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34581344

RESUMEN

Molecular magnetism in nanodomains of three isoreticular MIL-88(Fe) analogues is studied and reported. Microstructures of isoreticular extended frameworks of MIL-88B, MIL-88C, and the interpenetrated analogue of MIL-88D, i.e., MIL-126, with the trigonal prismatic 6-c acs net are synthesized by linking Fe3O inorganic cluster units with organic carboxylate linkers - benzene-1,4-dicarboxylic acid (BDC), 2,6-naphthalene dicarboxylic acid (NDC), and biphenyl-4,4'-dicarboxylic acid (BPDC), using a controlled solvent driven self-assembly process followed by a solvothermal method. The powder XRD traces are matched with the simulated diffraction patterns generated from their corresponding crystal structures, revealing the hexagonal symmetry for MIL-88B and MIL-88C, and the tetragonal symmetry for MIL-126. The elemental composition analysis confirms the empirical formula to be Fe3O(L)3 where L is the organic linker, supporting the formation of isoreticular MIL-88(Fe)-MOFs with MIL-88 topology. The morphologies of microstructures analyzed by SEM and TEM exhibit long spindle shaped rods with a core and a shell-like architecture for MIL-88B and MIL-88 C whereas MIL-126 shows cubic-shaped microstructures. The M-T plots confirm their blocking temperatures, TB, to be 60 K, 50 K, and 40 K for MIL-88B, MIL-88C, and MIL-126, respectively. The M-H plots reveal their magnetic response to be ferromagnetic at 10 K with the coercivities, HC, ranging from 250 G to 180 G. The gradual decrease in the TB and HC correlates with the nanocrystals' domain size, which decreases from MIL-88B to MIL-88C to MIL-126. Their phase transition from the ferromagnetic state to the short range ordering of the superparamagnetic state is observed in the temperature range of 100 K to 300 K. At T > TB, nanocrystals of all three MIL-88 microstructures act as a single-magnetic domain, owing to their shape anisotropy and finite-dimensionality. The electron density distribution and the spin density state modeled for each MIL-88 analogue exhibit localized electron density and spin density on Fe3O clusters, indicating the short range magnetic moment ordering in triangular metal oxide nodes with no extended magnetic cooperativity from their organic linkers. The short-range ordering of superparamagnetism in MIL-88(Fe)-MOFs suggests their further study as porous molecular-based magnets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...