Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 358: 142189, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38688350

RESUMEN

As important components of soluble microbial products in water, nucleobases have attracted much attention due to the high toxicity of their direct aromatic halogenated disinfection by-products (AH-DBPs) during chlorination. However, multiple halogenation sites of AH-DBPs pose challenges to identify them. In this study, reaction sites of pyrimidine bases and nucleosides during chlorination were investigated by quantum chemical computational method. The results indicate that the anion salt forms play key roles in chlorination of uracil, thymine, and their nucleosides, while neutral forms make predominant contributions to cytosine and cytidine. In view of both kinetics and thermodynamics, C5 is the most reactive site for uracil and thymine, N3/C5 and N3 for respective uridine and thymidine, N1/C5/N4 and N4 for respective cytosine and cytidine, whose estimated apparent rate constants kobs-est of ∼103, 103/102, 106/102/104, and 103 M-1 s-1, respectively, in consistent with the known experimental results. C6 in all pyrimidine compounds is hardly attacked by Cl+ in HOCl ascribed to its positive charge, but readily attacked by OH‾ in hydrolysis and the N1=C6 bond was found to possess the highest reactivity in hydrolysis among all double bonds. In addition, the structure-kinetic reactivity relationship study reveals a relatively strong correlation between lgkobs-est and APT charge in all pyrimidine compounds rather than FED2 (HOMO). The results are helpful to further understand the reactivity of various reaction sites in aromatic compounds during chlorination.

2.
Org Biomol Chem ; 22(14): 2851-2862, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516867

RESUMEN

Hypochlorous acid (HOCl) released from activated leukocytes plays a significant role in the human immune system, but is also implicated in numerous diseases due to its inappropriate production. Chlorinated nucleobases induce genetic changes that potentially enable and stimulate carcinogenesis, and thus have attracted considerable attention. However, their multiple halogenation sites pose challenges to identify them. As a good complement to experiments, quantum chemical computation was used to uncover chlorination sites and chlorinated products in this study. The results indicate that anion salt forms of all purine compounds play significant roles in chlorination except for adenosine. The kinetic reactivity order of all reaction sites in terms of the estimated apparent rate constant kobs-est (in M-1 s-1) is heterocyclic NH/N (102-107) > exocyclic NH2 (10-2-10) > heterocyclic C8 (10-5-10-1), but the order is reversed for thermodynamics. Combining kinetics and thermodynamics, the numerical simulation results show that N9 is the most reactive site for purine bases to form the main initial chlorinated product, while for purine nucleosides N1 and exocyclic N2/N6 are the most reactive sites to produce the main products controlled by kinetics and thermodynamics, respectively, and C8 is a possible site to generate the minor product. The formation mechanisms of biomarker 8-Cl- and 8-oxo-purine derivatives were also investigated. Additionally, the structure-kinetic reactivity relationship study reveals a good correlation between lg kobs-est and APT charge in all purine compounds compared to FED2 (HOMO), which proves again that the electrostatic interaction plays a key role. The results are helpful to further understand the reactivity of various reaction sites in aromatic compounds during chlorination.


Asunto(s)
Nucleósidos , Contaminantes Químicos del Agua , Humanos , Nucleósidos/química , Halogenación , Dominio Catalítico , Nucleósidos de Purina , Ácido Hipocloroso/química , Cinética , Cloro/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...