Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 64: 102793, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385075

RESUMEN

The Keap1-Nrf2 pathway has been established as a therapeutic target for Alzheimer's disease (AD). Directly inhibiting the protein-protein interaction (PPI) between Keap1 and Nrf2 has been reported as an effective strategy for treating AD. Our group has validated this in an AD mouse model for the first time using the inhibitor 1,4-diaminonaphthalene NXPZ-2 with high concentrations. In the present study, we reported a new phosphodiester containing diaminonaphthalene compound, POZL, designed to target the PPI interface using a structure-based design strategy to combat oxidative stress in AD pathogenesis. Our crystallographic verification confirms that POZL shows potent Keap1-Nrf2 inhibition. Remarkably, POZL showed its high in vivo anti-AD efficacy at a much lower dosage compared to NXPZ-2 in the transgenic APP/PS1 AD mouse model. POZL treatment in the transgenic mice could effectively ameliorate learning and memory dysfunction by promoting the Nrf2 nuclear translocation. As a result, the oxidative stress and AD biomarker expression such as BACE1 and hyperphosphorylation of Tau were significantly reduced, and the synaptic function was recovered. HE and Nissl staining confirmed that POZL improved brain tissue pathological changes by enhancing neuron quantity and function. Furthermore, it was confirmed that POZL could effectively reverse Aß-caused synaptic damage by activating Nrf2 in primary cultured cortical neurons. Collectively, our findings demonstrated that the phosphodiester diaminonaphthalene Keap1-Nrf2 PPI inhibitor could be regarded as a promising preclinical candidate of AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Ratones Transgénicos , Estrés Oxidativo
2.
J Med Chem ; 65(21): 14957-14969, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36288088

RESUMEN

Receptor-interacting protein kinase 1 (RIPK1) contributes to a broad set of inflammations and necroptosis in human diseases, which also plays an important role in the pathogenesis of Alzheimer's disease (AD). The inhibition of RIPK1 could be a novel strategy to improve cognitive function. SZM679, a highly specific RIPK1 inhibitor (Kd,RIPK1 = 8.6 nM, Kd,RIPK3 > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC50 = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. In a streptozocin-induced AD-like mouse model, behavioral tests showed that SZM679 apparently ameliorated learning and memory dysfunction. Nissl staining revealed that SZM679 improved neuronal loss. Moreover, the Tau hyperphosphorylation, neuroinflammation, and the RIPK1 phosphorylation level in the hippocampus and cortex were significantly decreased in the SZM679-treated group. Collectively, SZM679 represents a promising lead structure for the discovery of novel RIPK1 inhibitory anti-AD agents.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Necroptosis , Ciclopentanos , Benzotiazoles/farmacología , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...