Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1348172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344174

RESUMEN

Introduction: One major obstacle in validating drugs for the treatment or prevention of hearing loss is the limited data available on the distribution and concentration of drugs in the human inner ear. Although small animal models offer some insights into inner ear pharmacokinetics, their smaller organ size and different barrier (round window membrane) permeabilities compared to humans can complicate study interpretation. Therefore, developing a reliable large animal model for inner ear drug delivery is crucial. The inner and middle ear anatomy of domestic pigs closely resembles that of humans, making them promising candidates for studying inner ear pharmacokinetics. However, unlike humans, the anatomical orientation and tortuosity of the porcine external ear canal frustrates local drug delivery to the inner ear. Methods: In this study, we developed a surgical technique to access the tympanic membrane of pigs. To assess hearing pre- and post-surgery, auditory brainstem responses to click and pure tones were measured. Additionally, we performed 3D segmentation of the porcine inner ear images and used this data to simulate the diffusion of dexamethasone within the inner ear through fluid simulation software (FluidSim). Results: We have successfully delivered dexamethasone and dexamethasone sodium phosphate to the porcine inner ear via the intratympanic injection. The recorded auditory brainstem measurements revealed no adverse effects on hearing thresholds attributable to the surgery. We have also simulated the diffusion rates for dexamethasone and dexamethasone sodium phosphate into the porcine inner ear and confirmed the accuracy of the simulations using in-vivo data. Discussion: We have developed and characterized a method for conducting pharmacokinetic studies of the inner ear using pigs. This animal model closely mirrors the size of the human cochlea and the thickness of its barriers. The diffusion time and drug concentrations we reported align closely with the limited data available from human studies. Therefore, we have demonstrated the potential of using pigs as a large animal model for studying inner ear pharmacokinetics.

2.
iScience ; 26(6): 106789, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37213232

RESUMEN

Delivery of pharmaceutical therapeutics to the inner ear to treat and prevent hearing loss is challenging. Systemic delivery is not effective as only a small fraction of the therapeutic agent reaches the inner ear. Invasive surgeries to inject through the round window membrane (RWM) or cochleostomy may cause damage to the inner ear. An alternative approach is to administer drugs into the middle ear using an intratympanic injection, with the drugs primarily passing through the RWM to the inner ear. However, the RWM is a barrier, only permeable to a small number of molecules. To study and enhance the RWM permeability, we developed an ex vivo porcine RWM model, similar in structure and thickness to the human RWM. The model is viable for days, and drug passage can be measured at multiple time points. This model provides a straightforward approach to developing effective and non-invasive delivery methods to the inner ear.

3.
STAR Protoc ; 4(2): 102220, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37060559

RESUMEN

The inner ear of humans and large animals is embedded in a thick and dense bone that makes dissection challenging. Here, we present a protocol that enables three-dimensional (3D) characterization of intact inner ears from large-animal models. We describe steps for decalcifying bone, using solvents to remove color and lipids, and imaging tissues in 3D using confocal and light sheet microscopy. We then detail a pipeline to count hair cells in antibody-stained and 3D imaged cochleae using open-source software. For complete details on the use and execution of this protocol, please refer to (Moatti et al., 2022).1.

4.
Matter ; 5(9): 2960-2974, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35847197

RESUMEN

Respiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers. Compared with standard synthetic nanoparticle liposomes (Lipos), Lung-Exos exhibited superior distribution to the bronchioles and parenchyma and are deliverable to the lungs of rodents and nonhuman primates (NHPs) by dry powder inhalation. In a vaccine application, severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein encoding mRNA-loaded Lung-Exos (S-Exos) elicited greater immunoglobulin G (IgG) and secretory IgA (SIgA) responses than its loaded liposome (S-Lipo) counterpart. Importantly, S-Exos remained functional at room-temperature storage for one month. Our results suggest that extracellular vesicles can serve as an inhaled mRNA drug-delivery system that is superior to synthetic liposomes.

5.
iScience ; 25(8): 104695, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35865132

RESUMEN

Over 11% of the world's population experience hearing loss. Although there are promising studies to restore hearing in rodent models, the size, ontogeny, genetics, and frequency range of hearing of most rodents' cochlea do not match that of humans. The porcine cochlea can bridge this gap as it shares many anatomical, physiological, and genetic similarities with its human counterpart. Here, we provide a detailed methodology to process and image the porcine cochlea in 3D using tissue clearing and light-sheet microscopy. The resulting 3D images can be employed to compare cochleae across different ages and conditions, investigate the ontogeny of cochlear cytoarchitecture, and produce quantitative expression maps of LGR5, a marker of cochlear progenitors in mice. These data reveal that hair cell organization, inner ear morphology, cellular cartography in the organ of Corti, and spatiotemporal expression of LGR5 are dynamic over developmental stages in a pattern not previously documented.

6.
ACS Appl Mater Interfaces ; 14(10): 12883-12892, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35234448

RESUMEN

Vanadium dioxide undergoes a metal-to-insulator transition, where the energy of electron-electron, electron-lattice, spin-spin, and spin-lattice interactions are of the same order of magnitude. This leads to the coexistence of electronic and structural transitions in VO2 that limit the lifetime and speed of VO2-based devices. However, the closeness of interaction energy of lattice-electron-spin can be turned into an opportunity to induce some transitions while pinning others via external stimuli. That is, the contribution of spin, charge, orbital, and lattice degrees of freedom can be manipulated. In this study, spin engineering has been exploited to affect the spin-related interactions in VO2 by introducing a ferromagnetic Ni layer. The coercivity in the Ni layer is engineered by controlling the shape anisotropy via kinetics of growth. Using spin engineering, the structural pinning of the monoclinic M2 phase of VO2 is successfully achieved, while the electronic and magnetic transitions take place.

7.
Biomed Opt Express ; 13(1): 373, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35154877

RESUMEN

[This corrects the article on p. 5214 in vol. 12, PMID: 34513252.].

8.
Biomed Opt Express ; 12(8): 5214-5226, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513252

RESUMEN

Light-sheet fluorescence microscopy (LSFM) is a minimally invasive and high throughput imaging technique ideal for capturing large volumes of tissue with sub-cellular resolution. A fundamental requirement for LSFM is a seamless overlap of the light-sheet that excites a selective plane in the specimen, with the focal plane of the objective lens. However, spatial heterogeneity in the refractive index of the specimen often results in violation of this requirement when imaging deep in the tissue. To address this issue, autofocus methods are commonly used to refocus the focal plane of the objective-lens on the light-sheet. Yet, autofocus techniques are slow since they require capturing a stack of images and tend to fail in the presence of spherical aberrations that dominate volume imaging. To address these issues, we present a deep learning-based autofocus framework that can estimate the position of the objective-lens focal plane relative to the light-sheet, based on two defocused images. This approach outperforms or provides comparable results with the best traditional autofocus method on small and large image patches respectively. When the trained network is integrated with a custom-built LSFM, a certainty measure is used to further refine the network's prediction. The network performance is demonstrated in real-time on cleared genetically labeled mouse forebrain and pig cochleae samples. Our study provides a framework that could improve light-sheet microscopy and its application toward imaging large 3D specimens with high spatial resolution.

9.
Bioelectricity ; 3(4): 255-271, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018335

RESUMEN

Serious bone injuries have devastating effects on the lives of patients including limiting working ability and high cost. Orthopedic implants can aid in healing injuries to an extent that exceeds the natural regenerative capabilities of bone to repair fractures or large bone defects. Autografts and allografts are the standard implants used, but disadvantages such as donor site complications, a limited quantity of transplantable bone, and high costs have led to an increased demand for synthetic bone graft substitutes. However, replicating the complex physiological properties of biological bone, much less recapitulating its complex tissue functions, is challenging. Extensive efforts to design biocompatible implants that mimic the natural healing processes in bone have led to the investigation of piezoelectric smart materials because the bone has natural piezoelectric properties. Piezoelectric materials facilitate bone regeneration either by accumulating electric charge in response to mechanical stress, which mimics bioelectric signals through the direct piezoelectric effect or by providing mechanical stimulation in response to electrical stimulation through the converse piezoelectric effect. Although both effects are beneficial, the converse piezoelectric effect can address bone atrophy from stress shielding and immobility by improving the mechanical response of a healing defect. Mechanical stimulation has a positive impact on bone regeneration by activating cellular pathways that increase bone formation and decrease bone resorption. This review will highlight the potential of the converse piezoelectric effect to enhance bone regeneration by discussing the activation of beneficial cellular pathways, the properties of piezoelectric biomaterials, and the potential for the more effective administration of the converse piezoelectric effect using wireless control.

10.
Biomed Opt Express ; 11(11): 6181-6196, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33282483

RESUMEN

Hearing loss is a prevalent disorder that affects people of all ages. On top of the existing hearing aids and cochlear implants, there is a growing effort to regenerate functional tissues and restore hearing. However, studying and evaluating these regenerative medicine approaches in a big animal model (e.g. pigs) whose anatomy, physiology, and organ size are similar to a human is challenging. In big animal models, the cochlea is bulky, intricate, and veiled in a dense and craggy otic capsule. These facts complicate 3D microscopic analysis that is vital in the cochlea, where structure-function relation is time and again manifested. To allow 3D imaging of an intact cochlea of newborn and juvenile pigs with a volume up to ∼ 250 mm3, we adapted the BoneClear tissue clearing technique, which renders the bone transparent. The transparent cochleae were then imaged with cellular resolution and in a timely fashion, which prevented bubble formation and tissue degradation, using an adaptive custom-built light-sheet fluorescence microscope. The adaptive light-sheet microscope compensated for deflections of the illumination beam by changing the angles of the beam and translating the detection objective while acquiring images. Using this combination of techniques, macroscopic and microscopic properties of the cochlea were extracted, including the density of hair cells, frequency maps, and lower frequency limits. Consequently, the proposed platform could support the growing effort to regenerate cochlear tissues and assist with basic research to advance cures for hearing impairments.

11.
Sci Rep ; 9(1): 3009, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816206

RESUMEN

Control over the concurrent occurrence of structural (monoclinic to tetragonal) and electrical (insulator to the conductor) transitions presents a formidable challenge for VO2-based thin film devices. Speed, lifetime, and reliability of these devices can be significantly improved by utilizing solely electrical transition while eliminating structural transition. We design a novel strain-stabilized isostructural VO2 epitaxial thin-film system where the electrical transition occurs without any observable structural transition. The thin-film heterostructures with a completely relaxed NiO buffer layer have been synthesized allowing complete control over strains in VO2 films. The strain trapping in VO2 thin films occurs below a critical thickness by arresting the formation of misfit dislocations. We discover the structural pinning of the monoclinic phase in (10 ± 1 nm) epitaxial VO2 films due to bandgap changes throughout the whole temperature regime as the insulator-to-metal transition occurs. Using density functional theory, we calculate that the strain in monoclinic structure reduces the difference between long and short V-V bond-lengths (ΔV-V) in monoclinic structures which leads to a systematic decrease in the electronic bandgap of VO2. This decrease in bandgap is additionally attributed to ferromagnetic ordering in the monoclinic phase to facilitate a Mott insulator without going through the structural transition.

12.
ACS Appl Mater Interfaces ; 11(3): 3547-3554, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30590009

RESUMEN

Vanadium dioxide (VO2) is a strongly correlated material with 3d electrons, which exhibits temperature-driven insulator-to-metal transition with a concurrent change in the crystal symmetry. Interestingly, even modest changes in stoichiometry-induced orbital occupancy dramatically affect the electrical conductivity of the system. Here, we report a successful transformation of epitaxial monoclinic VO2 thin films from a conventionally insulating to permanently metallic behavior by manipulating the electron correlations. These ultrathin (∼10 nm) epitaxial VO2 films were grown on NiO(111)/Al2O3(0001) pseudomorphically, where the large misfit between NiO and Al2O3 were fully relaxed by domain-matching epitaxy. Complete conversion from an insulator to permanent metallic phase is achieved through injecting oxygen vacancies ( x ∼ 0.20 ± 0.02) into the VO2- x system via annealing under high vacuum (∼5 × 10-7 Torr) and increased temperature (450 °C). Systematic introduction of oxygen vacancies partially converts V4+ to V3+ and generates unpaired electron charges which result in the emergence of donor states near the Fermi level. Through the detailed study of the vibrational modes by Raman spectroscopy, hardening of the V-V vibrational modes and stabilization of V-V dimers are observed in vacuum-annealed VO2 films, providing conclusive evidence for stabilization of a monoclinic phase. This ultimately leads to convenient free-electron transport through the oxygen-deficient VO2- x thin films, resulting in metallic characteristics at room temperature. With these results, we propose a defect engineering pathway through the control of oxygen vacancies to tune electrical and optical properties in epitaxial monoclinic VO2.

13.
Microsc Res Tech ; 81(11): 1250-1256, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30368970

RESUMEN

This work provides the details of a simple and reliable method with less damage to prepare electron transparent samples for in situ studies in scanning/transmission electron microscopy. In this study, we use epitaxial VO2 thin films grown on c-Al2 O3 by pulsed laser deposition, which have a monoclinic-rutile transition at ~68°C. We employ an approach combining conventional mechanical wedge-polishing and Focused Ion beam to prepare the electron transparent samples of epitaxial VO2 thin films. The samples are first mechanically wedge-polished and ion-milled to be electron transparent. Subsequently, the thin region of VO2 films are separated from the rest of the polished sample using a focused ion beam and transferred to the in situ electron microscopy test stage. As a critical step, carbon nanotubes are used as connectors to the manipulator needle for a soft transfer process. This is done to avoid shattering of the brittle substrate film on the in situ sample support stage during the transfer process. We finally present the atomically resolved structural transition in VO2 films using this technique. This approach significantly increases the success rate of high-quality sample preparation with less damage for in situ studies of thin films and reduces the cost and instrumental/user errors associated with other techniques. The present work highlights a novel, simple, reliable approach with reduced damage to make electron transparent samples for atomic-scale insights of temperature-dependent transitions in epitaxial thin film heterostructures using in situ TEM studies.

14.
ACS Appl Mater Interfaces ; 9(28): 24298-24307, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28622721

RESUMEN

Unstrained and defect-free VO2 single crystals undergo structural (from high-temperature tetragonal to low-temperature monoclinic phase) and electronic phase transitions simultaneously. In thin films, however, in the presence of unrelaxed strains and defects, structural (Peierls) and electronic (Mott) transitions are affected differently, and are separated. In this paper, we have studied the temperature dependence of structural and electrical transitions in epitaxially grown vanadium dioxide films on (0001) sapphire substrates. These results are discussed using a combined kinetics and thermodynamics approach, where the velocity of phase transformation is controlled largely by kinetics, and the formation of intermediate phases is governed by thermodynamic considerations. We have grown (020) VO2 on (0001) sapphire with two (001) and (100) in-plane orientations rotated by 122°. The (100)-oriented crystallites are fully relaxed by the paradigm of domain-matching epitaxy, whereas (001) crystallites are not relaxed and exhibit the formation of a few atomic layers of thin interfacial V2O3. We have studied the structural (Peierls) transition by temperature-dependent in situ X-ray diffraction measurements, and electronic (Mott) transition by electrical resistance measurements. A delay of 3 °C is found between the onset of structural (76 °C) and electrical (73 °C) transitions in the heating cycle. This temporal lag in the transition is attributed to the residual strain existing in the VO2 crystallites. With this study, we suggest that the control of structural and electrical transitions is possible by varying the transition activation barrier for atomic jumps through the strain engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...