Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026753

RESUMEN

Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation. Analysis of 13 C-labeled FAs in hepatocytes lacking mitochondrial D-ß-hydroxybutyrate dehydrogenase (BDH1) revealed a partial reliance on mitochondrial conversion of D-ßOHB to acetoacetate (AcAc) for cytoplasmic DNL contribution, whereas FA elongation from ketone bodies was fully dependent on cytosolic acetoacetyl-CoA synthetase (AACS). Ketone bodies were essential for polyunsaturated FA (PUFA) homeostasis in hepatocytes, as loss of AACS diminished both free and esterified PUFAs. Ketogenic insufficiency depleted liver PUFAs and increased triacylglycerols, mimicking human MASLD, suggesting that ketogenesis supports PUFA homeostasis, and may mitigate MASLD-MASH progression in humans.

2.
Front Immunol ; 13: 874863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874700

RESUMEN

The immunosuppressive regulatory T (Treg) cells exert emerging effects on adipose tissue homeostasis and systemic metabolism. However, the metabolic regulation and effector mechanisms of Treg cells in coping with obesogenic insults are not fully understood. We have previously established an indispensable role of the O-linked N-Acetylglucosamine (O-GlcNAc) signaling in maintaining Treg cell identity and promoting Treg suppressor function, via STAT5 O-GlcNAcylation and activation. Here, we investigate the O-GlcNAc transferase (OGT)-STAT5 axis in driving the immunomodulatory function of Treg cells for metabolic homeostasis. Treg cell-specific OGT deficiency renders mice more vulnerable to high-fat diet (HFD)-induced adiposity and insulin resistance. Conversely, constitutive STAT5 activation in Treg cells confers protection against adipose tissue expansion and impaired glucose and insulin metabolism upon HFD feeding, in part by suppressing adipose lipid uptake and redistributing systemic iron storage. Treg cell function can be augmented by targeting the OGT-STAT5 axis to combat obesity and related metabolic disorders.


Asunto(s)
Resistencia a la Insulina , N-Acetilglucosaminiltransferasas , Factor de Transcripción STAT5 , Linfocitos T Reguladores , Acetilglucosamina/metabolismo , Animales , Hierro/metabolismo , Ratones , N-Acetilglucosaminiltransferasas/metabolismo , Obesidad/metabolismo , Factor de Transcripción STAT5/metabolismo , Linfocitos T Reguladores/metabolismo
3.
Cell Rep ; 39(2): 110575, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417710

RESUMEN

Human brown adipose tissue (BAT) undergoes progressive involution. This involution process is not recapitulated in rodents, and the underlying mechanisms are poorly understood. Here we show that the interscapular BAT (iBAT) of rabbits whitens rapidly during early adulthood. The transcriptomic remodeling and identity switch of mature adipocytes are accompanied by loss of brown adipogenic competence of progenitors. Single-cell RNA sequencing reveals that rabbit and human iBAT progenitors highly express the FSTL1 gene. When iBAT involutes in rabbits, adipocyte progenitors reduce FSTL1 expression and are refractory to brown adipogenic recruitment. Conversely, FSTL1 is constitutively expressed in mouse iBAT to sustain WNT signaling and prevent involution. Progenitor incompetence and iBAT paucity can be induced in mice by genetic deletion of the Fstl1 gene or ablation of Fstl1+ progenitors. Our results highlight the hierarchy and dynamics of the BAT progenitor compartment and implicate the functional incompetence of FSTL1-expressing progenitors in BAT involution.


Asunto(s)
Tejido Adiposo Pardo , Proteínas Relacionadas con la Folistatina , Adipocitos , Adipocitos Marrones/metabolismo , Adipogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Proteínas Relacionadas con la Folistatina/genética , Humanos , Ratones , Conejos , Termogénesis
4.
Mol Nutr Food Res ; 66(9): e2101136, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182101

RESUMEN

SCOPE: Trimethylamine-N-oxide (TMAO) is a microbiota-dependent and primarily animal-protein-derived proatherogenic metabolite. The ecological impact of pork-the most popular animal protein worldwide-on the human microbiome, and in the physiological context of TMAO and other biogenic amines, remains unknown. Poultry being the recommended heart-healthier animal protein, we investigated-if pork intake results in inferior-to-chicken TMAO-response while consuming a diet based on the Dietary Guidelines for Americans (DGA). METHODS AND RESULTS: In a randomized, controlled, all-food-provided, crossover, feeding trial, healthy adults consumed 156 g day-1 of lean-pork or chicken (active-control) as primary proteins. Mixed-effect modeling shows pork as noninferior to chicken for circulating TMAO response and microbiota-generated essential TMAO-precursor-trimethylamine (97.5% CI, n = 36/protein). Markers of lipid metabolism, inflammation and oxidative stress, serum levels of betaine, choline, L-carnitine, composition and functional-capability of the microbiota, and association of baseline TMAO-levels with TMAO-response (both, r > 0.6, p = 0.0001) are nondistinguishable between the protein groups. TMAO reduction and similar shifts in microbiota and biogenic-amine signatures postdiet in both groups indicate a background DGA-effect. CONCLUSION: Unlike extrapolating negative results, this study presents noninferiority-testing based evidence. Consuming pork as a predominant protein within an omnivorous DGA-diet does not exacerbate TMAO-response. Results highlight the importance of understanding protein-TMAO interactions within dietary patterns.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Carne de Cerdo , Carne Roja , Animales , Colina/metabolismo , Humanos , Metilaminas , Política Nutricional , Óxidos , Aves de Corral/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA