Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Sci ; 15(18): 6738-6751, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725499

RESUMEN

In the decade since the discovery of androglobin, a multi-domain hemoglobin of metazoans associated with ciliogenesis and spermatogenesis, there has been little advance in the knowledge of the biochemical and structural properties of this unusual member of the hemoglobin superfamily. Using a method for aligning remote homologues, coupled with molecular modelling and molecular dynamics, we have identified a novel structural alignment to other hemoglobins. This has led to the first stable recombinant expression and characterization of the circularly permuted globin domain. Exceptional for eukaryotic globins is that a tyrosine takes the place of the highly conserved phenylalanine in the CD1 position, a critical point in stabilizing the heme. A disulfide bond, similar to that found in neuroglobin, forms a closed loop around the heme pocket, taking the place of androglobin's missing CD loop and further supporting the heme pocket structure. Highly unusual in the globin superfamily is that the heme iron binds nitric oxide as a five-coordinate complex similar to other heme proteins that have nitric oxide storage functions. With rapid autoxidation and high nitrite reductase activity, the globin appears to be more tailored toward nitric oxide homeostasis or buffering. The use of our multi-template profile alignment method to yield the first biochemical characterisation of the circularly permuted globin domain of androglobin expands our knowledge of the fundamental functioning of this elusive protein and provides a pathway to better define the link between the biochemical traits of androglobin with proposed physiological functions.

2.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712280

RESUMEN

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

3.
Chembiochem ; 24(14): e202300382, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37305956

RESUMEN

Stereoselective carbon-carbon bond forming reactions are quintessential transformations in organic synthesis. One example is the Diels-Alder reaction, a [4+2] cycloaddition between a conjugated diene and a dienophile to form cyclohexenes. The development of biocatalysts for this reaction is paramount for unlocking sustainable routes to a plethora of important molecules. To obtain a comprehensive understanding of naturally evolved [4+2] cyclases, and to identify hitherto uncharacterised biocatalysts for this reaction, we constructed a library comprising forty-five enzymes with reported or predicted [4+2] cycloaddition activity. Thirty-one library members were successfully produced in recombinant form. In vitro assays employing a synthetic substrate incorporating a diene and a dienophile revealed broad-ranging cycloaddition activity amongst these polypeptides. The hypothetical protein Cyc15 was found to catalyse an intramolecular cycloaddition to generate a novel spirotetronate. The crystal structure of this enzyme, along with docking studies, establishes the basis for stereoselectivity in Cyc15, as compared to other spirotetronate cyclases.


Asunto(s)
Carbono , Proteínas , Catálisis , Reacción de Cicloadición , Técnicas de Química Sintética
4.
Biomolecules ; 12(11)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358957

RESUMEN

After the SARS-CoV-2 Wuhan variant that gave rise to the pandemic, other variants named Delta, Omicron, and Omicron-2 sequentially became prevalent, with mutations spread around the viral genome, including on the spike (S) protein; in order to understand the resultant in gains in infectivity, we interrogated in silico both the equilibrium binding and the binding pathway of the virus' receptor-binding domain (RBD) to the angiotensin-converting enzyme 2 (ACE2) receptor. We interrogated the molecular recognition between the RBD of different variants and ACE2 through supervised molecular dynamics (SuMD) and classic molecular dynamics (MD) simulations to address the effect of mutations on the possible S protein binding pathways. Our results indicate that compensation between binding pathway efficiency and stability of the complex exists for the Omicron BA.1 receptor binding domain, while Omicron BA.2's mutations putatively improved the dynamic recognition of the ACE2 receptor, suggesting an evolutionary advantage over the previous strains.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Unión Proteica , Peptidil-Dipeptidasa A/química , COVID-19/genética , Receptores Virales/genética , Mutación
5.
Bioorg Med Chem Lett ; 29(20): 126611, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31447084

RESUMEN

A series of novel allosteric antagonists of the GLP-1 receptor (GLP-1R), exemplified by HTL26119, are described. SBDD approaches were employed to identify HTL26119, exploiting structural understanding of the allosteric binding site of the closely related Glucagon receptor (GCGR) (Jazayeri et al., 2016) and the homology relationships between GCGR and GLP-1R. The region around residue C3476.36b of the GLP-1R receptor represents a key difference from GCGR and was targeted for selectivity for GLP-1R.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Compuestos Heterocíclicos/química , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Secuencia de Aminoácidos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Receptores de Glucagón/antagonistas & inhibidores , Transducción de Señal , Relación Estructura-Actividad
6.
Biochem Pharmacol ; 142: 96-110, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28705698

RESUMEN

Calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors are heteromers of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, and one of three receptor activity-modifying proteins (RAMPs). How CGRP and AM activate CLR and how this process is modulated by RAMPs is unclear. We have defined how CGRP and AM induce Gs-coupling in CLR-RAMP heteromers by measuring the effect of targeted mutagenesis in the CLR transmembrane domain on cAMP production, modeling the active state conformations of CGRP and AM receptors in complex with the Gs C-terminus and conducting molecular dynamics simulations in an explicitly hydrated lipidic bilayer. The largest effects on receptor signaling were seen with H295A5.40b, I298A5.43b, L302A5.47b, N305A5.50b, L345A6.49b and E348A6.52b, F349A6.53b and H374A7.47b (class B numbering in superscript). Many of these residues are likely to form part of a group in close proximity to the peptide binding site and link to a network of hydrophilic and hydrophobic residues, which undergo rearrangements to facilitate Gs binding. Residues closer to the extracellular loops displayed more pronounced RAMP or ligand-dependent effects. Mutation of H3747.47b to alanine increased AM potency 100-fold in the CGRP receptor. The molecular dynamics simulation showed that TM5 and TM6 pivoted around TM3. The data suggest that hydrophobic interactions are more important for CLR activation than other class B GPCRs, providing new insights into the mechanisms of activation of this class of receptor. Furthermore the data may aid in the understanding of how RAMPs modulate the signaling of other class B GPCRs.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Animales , Células COS , Péptido Relacionado con Gen de Calcitonina/química , Péptido Relacionado con Gen de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/química , Proteína Similar al Receptor de Calcitonina/genética , Chlorocebus aethiops , AMP Cíclico/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Ensayo de Unión Radioligante , Proteínas Modificadoras de la Actividad de Receptores/química , Proteínas Modificadoras de la Actividad de Receptores/genética , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Proteínas Recombinantes de Fusión , Transfección
7.
Mol Cell Endocrinol ; 454: 39-49, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28572046

RESUMEN

The extracellular loop 2 (ECL2) region is the most conserved of the three ECL domains in family B G protein-coupled receptors (GPCRs) and has a fundamental role in ligand binding and activation across the receptor super-family. ECL2 is fundamental for ligand-induced activation of the calcitonin gene related peptide (CGRP) receptor, a family B GPCR implicated in migraine and heart disease. In this study we apply a comprehensive targeted non-alanine substitution analysis method and molecular modelling to the functionally important residues of ECL2 to reveal key molecular interactions. We identified an interaction network between R274/Y278/D280/W283. These amino acids had the biggest reduction in signalling following alanine substitution analysis and comprise a group of basic, acidic and aromatic residues conserved in the wider calcitonin family of class B GPCRs. This study identifies key and varied constraints at each locus, including diverse biochemical requirements for neighbouring tyrosine residues and a W283H substitution that recovered wild-type (WT) signalling, despite the strictly conserved nature of the central ECL2 tryptophan and the catastrophic effects on signalling of W283A substitution. In contrast, while the distal end of ECL2 requires strict conservation of hydrophobicity or polarity in each position, mutation of these residues never has a large effect. This approach has revealed linked networks of amino acids, consistent with structural models of ECL2 and likely to represent a shared structural framework at an important ligand-receptor interface that is present across the family B GPCRs.


Asunto(s)
Mutagénesis , Receptores de Péptido Relacionado con el Gen de Calcitonina/química , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Animales , Células COS , Proteína Similar al Receptor de Calcitonina , Membrana Celular/metabolismo , Chlorocebus aethiops , Estudios de Cohortes , Simulación por Computador , Secuencia Conservada , AMP Cíclico/metabolismo , Humanos , Modelos Moleculares , Mutación/genética , Estructura Secundaria de Proteína , Transducción de Señal , Relación Estructura-Actividad , Triptófano/química
9.
J Biol Chem ; 291(42): 21925-21944, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27566546

RESUMEN

The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.


Asunto(s)
Adrenomedulina/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Sistemas de Mensajero Secundario/fisiología , Adrenomedulina/genética , AMP Cíclico/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética
10.
Nucleic Acids Res ; 44(5): 2160-72, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26582911

RESUMEN

ComA-like transcription factors regulate the quorum response in numerous Gram-positive bacteria. ComA proteins belong to the tetrahelical helix-turn-helix superfamily of transcriptional activators, which bind as homodimers to inverted sequence repeats in the DNA. Here, we report that ComA from Bacillus subtilis recognizes a topologically distinct motif, in which the binding elements form a direct repeat. We provide in vitro and in vivo evidence that the canonical and non-canonical site play an important role in facilitating type I and type II promoter activation, respectively, by interacting with different subunits of RNA polymerase. We furthermore show that there is a variety of contexts in which the non-canonical site can occur and identify new direct target genes that are located within the integrative and conjugative element ICEBs1. We therefore suggest that ComA acts as a multifunctional transcriptional activator and provides a striking example for complexity in protein-DNA interactions that evolved in the context of quorum sensing.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Subunidades de Proteína/genética , Percepción de Quorum/genética , Activación Transcripcional , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencias Invertidas Repetidas , Datos de Secuencia Molecular , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Sci Signal ; 8(401): ra110, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26535008

RESUMEN

Signaling by many heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) is either enhanced or attenuated by changes in plasma membrane potential. To identify structural correlates of the voltage sensitivity of GPCR signaling, we chose muscarinic acetylcholine receptors (the M1, M3, and M5 isoforms) as a model system. We combined molecular docking analysis with Förster resonance energy transfer (FRET)-based assays that monitored receptor activity under voltage clamp conditions. When human embryonic kidney (HEK) 293 cells expressing the individual receptors were stimulated with the agonist carbachol, membrane depolarization enhanced signaling by the M1 receptor but attenuated signaling by the M3 and M5 receptors. Furthermore, whether membrane depolarization enhanced or inhibited receptor signaling depended on the type of agonist. Membrane depolarization attenuated M3 receptor signaling when the receptor was bound to carbachol or acetylcholine, whereas depolarization enhanced signaling when the receptor was bound to either choline or pilocarpine. Docking calculations predicted that there were two distinct binding modes for these ligands, which were associated with the effect of depolarization on receptor function. From these calculations, we identified a residue in the M3 receptor that, when mutated, would alter the binding mode of carbachol to resemble that of pilocarpine in silico. Introduction of this mutated M3 receptor into cells confirmed that the membrane depolarization enhanced, rather than attenuated, signaling by the carbachol-bound receptor. Together, these data suggest that the directionality of the voltage sensitivity of GPCR signaling is defined by the specific binding mode of each ligand to the receptor.


Asunto(s)
Acetilcolina , Carbacol , Potenciales de la Membrana , Agonistas Muscarínicos , Mutación , Receptores Muscarínicos , Transducción de Señal , Acetilcolina/química , Acetilcolina/farmacología , Carbacol/química , Carbacol/farmacología , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Agonistas Muscarínicos/química , Agonistas Muscarínicos/farmacología , Receptores Muscarínicos/química , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
12.
Nature ; 519(7542): 247-50, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25533960

RESUMEN

The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) respond to orexin neuropeptides in the central nervous system to regulate sleep and other behavioural functions in humans. Defects in orexin signalling are responsible for the human diseases of narcolepsy and cataplexy; inhibition of orexin receptors is an effective therapy for insomnia. The human OX2 receptor (OX2R) belongs to the ß branch of the rhodopsin family of GPCRs, and can bind to diverse compounds including the native agonist peptides orexin-A and orexin-B and the potent therapeutic inhibitor suvorexant. Here, using lipid-mediated crystallization and protein engineering with a novel fusion chimaera, we solved the structure of the human OX2R bound to suvorexant at 2.5 Å resolution. The structure reveals how suvorexant adopts a π-stacked horseshoe-like conformation and binds to the receptor deep in the orthosteric pocket, stabilizing a network of extracellular salt bridges and blocking transmembrane helix motions necessary for activation. Computational docking suggests how other classes of synthetic antagonists may interact with the receptor at a similar position in an analogous π-stacked fashion. Elucidation of the molecular architecture of the human OX2R expands our understanding of peptidergic GPCR ligand recognition and will aid further efforts to modulate orexin signalling for therapeutic ends.


Asunto(s)
Azepinas/química , Azepinas/farmacología , Antagonistas de los Receptores de Orexina , Receptores de Orexina/química , Triazoles/química , Triazoles/farmacología , Azepinas/metabolismo , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Receptores de Orexina/metabolismo , Conformación Proteica , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Triazoles/metabolismo
13.
PLoS Comput Biol ; 7(10): e1002193, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022248

RESUMEN

Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR ß2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally.


Asunto(s)
Modelos Teóricos , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Termodinámica
14.
J Med Chem ; 52(16): 5207-16, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19627087

RESUMEN

The recent availability in the literature of new crystal structures of inactive G-protein coupled receptors (GPCRs) prompted us to study the extent to which these crystal structures constitute an advantage over the former prototypic rhodopsin template for homology modeling of the transmembrane (TM) region of human class A GPCRs. Our results suggest that better templates than those currently available are required by the majority of these GPCRs to generate homology models that are accurate enough for simple virtual screening aimed at computer-aided drug discovery. Thus, we investigated: (1) which class A GPCRs would have the highest impact as potential templates for homology modeling of other GPCRs, if their structures were solved, and (2) the extent to which multiple-template homology modeling (using all currently available GPCR crystal structures) provides an improvement over single-template homology modeling, as evaluated by the accuracy of rigid protein-flexible ligand docking on these models.


Asunto(s)
Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Homología de Secuencia de Aminoácido , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Humanos , Ligandos , Conformación Proteica , Rodopsina/química
15.
EMBO J ; 27(17): 2293-304, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-18668123

RESUMEN

G-protein-coupled receptors are generally thought to be organized as dimers; whether they form higher order oligomers is a topic of much controversy. We combined bioluminescence/fluorescence complementation and energy transfer to demonstrate that at least four dopamine D2 receptors are located in close molecular proximity in living mammalian cells, consistent with their organization as higher order oligomers at the plasma membrane. This implies the existence of multiple receptor interfaces. In addition to the symmetrical interface in the fourth transmembrane segment (TM4) we identified previously by cysteine (Cys) crosslinking, we now show that a patch of residues at the extracellular end of TM1 forms a second symmetrical interface. Crosslinking of D2 receptor with Cys substituted simultaneously into both TM1 and TM4 led to higher order species, consistent with our novel biophysical results. Remarkably, the rate and extent of crosslinking at both interfaces were unaltered over a 100-fold range of receptor expression. Thus, at physiological levels of expression, the receptor is organized in the plasma membrane into a higher order oligomeric structure.


Asunto(s)
Receptores de Dopamina D2/química , Sustitución de Aminoácidos , Línea Celular , Reactivos de Enlaces Cruzados , Cisteína/química , Dimerización , Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia , Humanos , Mediciones Luminiscentes , Modelos Moleculares , Complejos Multiproteicos/química , Mutagénesis Sitio-Dirigida , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
16.
Expert Opin Drug Discov ; 3(3): 343-355, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19672320

RESUMEN

BACKGROUND: Despite the large amount of experimental data accumulated in the past decade on G-protein coupled receptor (GPCR) structure and function, understanding of the molecular mechanisms underlying GPCR signaling is still far from being complete, thus impairing the design of effective and selective pharmaceuticals. OBJECTIVE: Understanding of GPCR function has been challenged even further by more recent experimental evidence that several of these receptors are organized in the cell membrane as homo- or hetero-oligomers, and that they may exhibit unique pharmacological properties. Given the complexity of these new signaling systems, researcher's efforts are turning increasingly to molecular modeling, bioinformatics and computational simulations for mechanistic insights of GPCR functional plasticity. METHODS: We review here current advances in the development and application of computational approaches to improve prediction of GPCR structure and dynamics, thus enhancing current understanding of GPCR signaling. RESULTS/CONCLUSIONS: Models resulting from use of these computational approaches further supported by experiments are expected to help elucidate the complex allosterism that propagates through GPCR complexes, ultimately aiming at successful structure-based rational drug design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...