Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 30(3): 554-563, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787999

RESUMEN

PURPOSE: Brain metastases (BM) are mainly treated palliatively with an expected survival of less than 12 months after diagnosis. In many solid tumors, the human neural stem cell marker glycoprotein CD133 is a marker of a tumor-initiating cell population that contributes to therapy resistance, relapse, and metastasis. EXPERIMENTAL DESIGN: Here, we use a variant of our previously described CD133 binder to generate second-generation CD133-specific chimeric antigen receptor T cells (CAR-T) to demonstrate its specificity and efficacy against multiple patient-derived BM cell lines with variable CD133 antigen expression. RESULTS: Using both lung- and colon-BM patient-derived xenograft models, we show that a CD133-targeting CAR-T cell therapy can evoke significant tumor reduction and survival advantage after a single dose, with complete remission observed in the colon-BM model. CONCLUSIONS: In summary, these data suggest that CD133 plays a critical role in fueling the growth of BM, and immunotherapeutic targeting of this cell population is a feasible strategy to control the outgrowth of BM tumors that are otherwise limited to palliative care. See related commentary by Sloan et al., p. 477.


Asunto(s)
Neoplasias Encefálicas , Receptores Quiméricos de Antígenos , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Recurrencia Local de Neoplasia/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Linfocitos T , Línea Celular Tumoral , Antígeno AC133/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(8): e2205247120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780531

RESUMEN

Brain metastases (BM) are the most common brain neoplasm in adults. Current BM therapies still offer limited efficacy and reduced survival outcomes, emphasizing the need for a better understanding of the disease. Herein, we analyzed the transcriptional profile of brain metastasis initiating cells (BMICs) at two distinct stages of the brain metastatic cascade-the "premetastatic" or early stage when they first colonize the brain and the established macrometastatic stage. RNA sequencing was used to obtain the transcriptional profiles of premetastatic and macrometastatic (non-premetastatic) lung, breast, and melanoma BMICs. We identified that lung, breast, and melanoma premetastatic BMICs share a common transcriptomic signature that is distinct from their non-premetastatic counterparts. Importantly, we show that premetastatic BMICs exhibit increased expression of HLA-G, which we further demonstrate functions in an HLA-G/SPAG9/STAT3 axis to promote the establishment of brain metastatic lesions. Our findings suggest that unraveling the molecular landscape of premetastatic BMICs allows for the identification of clinically relevant targets that can possibly inform the development of preventive and/or more efficacious BM therapies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Antígenos HLA-G , Neoplasias Pulmonares , Melanoma , Adulto , Humanos , Proteínas Adaptadoras Transductoras de Señales , Encéfalo/patología , Neoplasias Encefálicas/secundario , Antígenos HLA-G/genética , Pulmón/patología , Neoplasias Pulmonares/patología , Melanoma/patología , Factor de Transcripción STAT3/genética , Neoplasias de la Mama/patología
3.
Cancer Cell ; 40(12): 1488-1502.e7, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368321

RESUMEN

MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Dihidroorotato Deshidrogenasa , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Pirimidinas/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo
4.
STAR Protoc ; 3(3): 101628, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36035806

RESUMEN

Human neural stem cells (hNSCs) are a valuable tool in brain cancer research since they are used as a normal control for multiple assays, mainly pertaining to toxicity. Here, we present a protocol to safely and successfully derive and culture hNSCs in vitro from human embryonic brain tissue. We describe the steps to dissociate embryonic brain tissue and culture hNSCs, followed by the procedure to expand hNSCs. These cells can be used for downstream applications including RNA-seq and omics studies. For complete details on the use and execution of this protocol, please refer to Venugopal et al. (2012b), Bakhshinyan et al. (2019), and Venugopal et al. (2012a).


Asunto(s)
Neoplasias Encefálicas , Células-Madre Neurales , Encéfalo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...