Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949281

RESUMEN

Large-amplitude thermal excursions imposed on deeply supercooled liquids modulate the nonlinear time evolution of their structural rearrangements. The consequent aftereffects are treated within a Wiener-Volterra expansion in laboratory time that allows one to calculate the associated physical-aging and thermal response functions. These responses and the corresponding higher-harmonic susceptibilities are illustrated using calculations based on the Tool-Narayanaswamy-Moynihan (TNM) model. The conversion from laboratory to material time is thoroughly discussed. Similarities and differences to field-induced higher-harmonic susceptibilities are illustrated using Lissajous and Cole-Cole plots and discussed in terms of aging nonlinearity parameters. For the Lissajous plots, banana-type shapes emerge, while the Cole-Cole plots display cardioidic and other visually appealing patterns. For application beyond the regime in which conventional single-parameter aging concepts work, the Wiener-Volterra material-time-series is introduced as the central tool. Calculations and analyses within this general framework in conjunction with suitable choices of higher-order memory kernels and employing correspondingly extended TNM models yield at least qualitative agreement with recent large-perturbation physical aging experiments. Implications for differential scanning calorimetry and related methods are discussed. The introduced concepts and analyses provide a solid foundation for a generalized description of nonlinear thermal out-of-equilibrium dynamics of glass forming materials, differing from the nonlinear responses known from rheology and dielectric spectroscopy.

2.
Phys Chem Chem Phys ; 26(17): 13219-13229, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634288

RESUMEN

The present work focuses on the dynamics of the ionic constituents of 1-propyl-3-methyl-imidazolium-bis-(trifluormethylsulfonyl)-imide (PT), a paradigmatic ionic liquid, as an additive in poly(vinylpyrrolidone) (PVP). Hence, the resulting product can be regarded as a polymer electrolyte as well as an amorphous dispersion. Leveraging dielectric spectroscopy and oscillatory shear rheology, complemented by differential scanning calorimetry, the spectral shapes and the relaxation maps of the supercooled PVP-PT mixtures are accessed in their full compositional range. The study also presents dielectric and shear responses of neat PVP with a molecular weight of 2500 g mol-1. We discuss the plasticizing role of the PT additive and the decoupling between ionic dynamics and segmental relaxation in these mixtures. The extracted relaxation times, steady-state viscosities, and conductivities are employed to estimate the translational diffusivities of the ionic penetrants by means of the Stokes-Einstein, Nernst-Einstein, and Almond-West relations. While some of the estimated diffusivities agree with each other, some do not, pointing to the importance of the chosen hydrodynamic approximations and the type of response considered for the analysis. The present extensive dielectric, rheological, and calorimetric study enables a deeper understanding of relaxation and transport of ionic ingredients in polymers, particularly in the slow-dynamics regime which is difficult to access experimentally by direct-diffusivity probes.

3.
J Chem Phys ; 160(8)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38411232

RESUMEN

Glutaronitrile (GN) doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at concentrations below and above the room-temperature conductivity optimum near 1M of Li salt is investigated using dielectric spectroscopy and shear rheology. The experiments are carried out from ambient down to the glass transition temperature Tg, which increases considerably as LiTFSI is admixed to GN. As the temperature is lowered, the conductivity optimum shifts to lower salt concentrations, while the power-law exponents connecting resistivity and molecular reorientation time remain smallest for the 1M composition. By contrast, the rheologically detected time constants, as well as those obtained using dielectric spectroscopy, increase monotonically with increasing Li salt concentration for all temperatures. It is demonstrated that the shear mechanical measurements are, nevertheless, sensitive to the 1M conductivity optimum, thus elucidating the interplay of the dinitrile matrix with the mobile species. The data for the Li doped GN and other nitrile solvents all follow about the same Walden line, in harmony with their highly conductive character. The composition dependent relation between the ionic and the reorientational dynamics is also elucidated.

4.
J Chem Phys ; 159(22)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38078520

RESUMEN

A high-resolution, temperature oscillation-based probe of physical aging in complex systems is introduced. The Fourier analysis of the measured responses allows one to extract high-order, aging-related nonlinearities that are not accessible via traditional temperature-jump and temperature-ramp procedures. To demonstrate the potential of this oscillatory approach, we analyze the periodic time evolution of glycerol's structural relaxation using shear rheology as a vehicle. Thereby, we access up to the sixth harmonic and detect aging fingerprints within a resolution range of three orders of magnitude for temperature amplitudes of up to 4 K. The even harmonics are present since aging is not symmetrical with respect to the direction of temperature change. The high-order aging coefficients obtained for glycerol are described reasonably well within the Tool-Narayanaswamy-Moynihan formalism.

5.
Phys Chem Chem Phys ; 25(35): 24042-24059, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37654228

RESUMEN

Solvated in propylene carbonate, viscous phenol is studied using dielectric spectroscopy and shear rheology. In addition, several oxygen-17 and deuteron nuclear magnetic resonance (NMR) techniques are applied to specifically isotope labeled equimolar mixtures. Quantum chemical calculations are used to check the electrical field gradient at phenol's oxygen site. The chosen combination of NMR methods facilitates the selective examination of potentially hydrogen-bond related contributions as well as those dominated by the structural relaxation. Taken together the present results for phenol in equimolar mixtures with the van der Waals liquid propylene carbonate provide evidence for the existence of a very weak Debye-like process that originates from ringlike supramolecular associates.

6.
J Chem Phys ; 157(23): 231101, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36550030

RESUMEN

Currently, there is a debate whether the structural relaxation of polar liquids is more faithfully reflected (i) by the generically shaped response detected by dynamic light scattering or rather (ii) by the slower, more stretched, system-dependent susceptibility response recorded by dielectric spectroscopy. In this work, nonlinearly induced transients probing structural relaxation reveal that near the glass transition, alternative (ii) is appropriate for propylene glycol. Results from shear rheology and from calorimetry corroborate this finding, underscoring the previously advanced notion (Moch et al., Phys. Rev. Lett. 128, 228001, 2022) that the reorientationally probed structural susceptibility of viscous liquids displays a nongeneric spectral shape.


Asunto(s)
Espectroscopía Dieléctrica , Propilenglicol , Calorimetría , Dispersión Dinámica de Luz , Reología
7.
Mol Pharm ; 19(5): 1586-1597, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35405077

RESUMEN

Acetaminophen, nicotine, and lidocaine hydrochloride were investigated in their deeply supercooled liquid states using oscillatory shear rheology. The mechanical spectra of these drugs are presented in modulus, compliance, as well as fluidity formats. Their frequency profiles can be described via models adapted from the field of charge transport. Inspired by the success of this approach, the Barton-Nakajima-Namikawa relation, best known from the same field, was also tested. When adapted to rheology, this approach interrelates static and dynamic characteristics of viscous flow and was found to work excellently. The temperature dependence of the characteristic shear frequencies was checked against the shoving model, which relates them to the temperature-dependent instantaneous shear modulus and acceptable agreement was found. Combined with shear mechanical literature data on ibuprofen and indomethacin, a modified version of the phenomenological model by Gemant, DiMarzio, and Bishop (GDB) was employed to successfully predict the shape and amplitude of the dielectric spectra for all studied liquids, except for lidocaine hydrochloride. For the latter, the modified GDB model is suggested to aid in mapping out the reorientational part of the dielectric response, while the experimental results are strongly superimposed by ionic conduction phenomena. The reverse transformation, the calculation of rheological spectra based on dielectric ones, is also successfully demonstrated. For the example of acetyl salicylic acid, it is shown how dielectric spectra can be used to even predict rheological ones. The limits of the central parameter governing these mutual transformations, the electroviscoelastic material constant, and indications for its correlation with the dielectric relaxation strength are discussed. For pharmaceuticals characterized by a strong dynamical decoupling of the electrical from the mechanical degrees of freedom, the modified GDB model is not expected to be applicable.


Asunto(s)
Vidrio , Lidocaína , Preparaciones Farmacéuticas , Reología , Temperatura
8.
J Chem Phys ; 155(13): 134901, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624979

RESUMEN

Nonlinear rheological properties of viscous indomethacin are studied in the frequency range of its structural relaxation, that is, in a range so far inaccessible to standard techniques involving medium-amplitude oscillatory shear amplitudes. The first- and third-order nonlinearity parameters thus recorded using a sequence of small and large shear excitations in a time efficient manner are compared with predictions from rheological models. By properly phase cycling the shear amplitudes, build-up and decay transients are recorded. Analogous to electrical-field experiments, these transients yield direct access to the structural relaxation times under linear and nonlinear shearing conditions. To demonstrate the broader applicability of the present approach, transient analyses are also carried out for the glass formers glycerol, ortho-terphenyl, and acetaminophen.


Asunto(s)
Frío , Indometacina , Reología , Acetaminofén , Glicerol , Indometacina/química , Compuestos de Terfenilo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...