Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1401599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050757

RESUMEN

With over 450 genes, solute carriers (SLCs) constitute the largest transporter superfamily responsible for the uptake and efflux of nutrients, metabolites, and xenobiotics in human cells. SLCs are associated with a wide variety of human diseases, including cancer, diabetes, and metabolic and neurological disorders. They represent an important therapeutic target class that remains only partly exploited as therapeutics that target SLCs are scarce. Additionally, many small molecules reported in the literature to target SLCs are poorly characterized. Both features may be due to the difficulty of developing SLC transport assays that fulfill the quality criteria for high-throughput screening. Here, we report one of the main limitations hampering assay development within the RESOLUTE consortium: the lack of a resource providing high-quality information on SLC tool compounds. To address this, we provide a systematic annotation of tool compounds targeting SLCs. We first provide an overview on RESOLUTE assays. Next, we present a list of SLC-targeting compounds collected from the literature and public databases; we found that most data sources lacked specificity data. Finally, we report on experimental tests of 19 selected compounds against a panel of 13 SLCs from seven different families. Except for a few inhibitors, which were active on unrelated SLCs, the tested inhibitors demonstrated high selectivity for their reported targets. To make this knowledge easily accessible to the scientific community, we created an interactive dashboard displaying the collected data in the RESOLUTE web portal (https://re-solute.eu). We anticipate that our open-access resources on assays and compounds will support the development of future drug discovery campaigns for SLCs.

2.
Front Pharmacol ; 15: 1372109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783936

RESUMEN

The prostaglandin transporter (PGT, SLCO2A1) mediates transport of prostanoids (a.o. prostaglandin E2 (PGE2)) into cells and thereby promotes their degradation. Overexpression of PGT leads to low extracellular PGE2 levels and has been linked to impaired wound healing of diabetic foot ulcers. Inhibition of PGT could thus be beneficial, however, no PGT inhibitors are currently on the market and drug discovery efforts are hampered by lack of high-through screening assays for this transporter. Here we report on a label-free impedance-based assay for PGT that measures transport activity through receptor activation (TRACT) utilizing prostaglandin E2 receptor subtype EP3 and EP4 that are activated by PGE2. We found that induction of PGT expression on HEK293-JumpIn-SLCO2A1 cells that also express EP3 and EP4 leads to an over 10-fold reduction in agonistic potency of PGE2. PGE2 potency could be recovered upon inhibition of PGT-mediated PGE2 uptake with PGT inhibitors olmesartan and T26A, the potency of which could be established as well. Moreover, the TRACT assay enabled the assessment of transport function of PGT natural variants. Lastly, HUVEC cells endogenously expressing prostanoid receptors and PGT were exploited to study wound healing properties of PGE2 and T26A in real-time using a novel impedance-based scratch-induced wound healing assay. These novel impedance-based assays will advance PGT drug discovery efforts and pave the way for the development of PGT-based therapies.

3.
ACS Chem Neurosci ; 15(7): 1424-1431, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478848

RESUMEN

Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Ácido Glutámico , Transportador 2 de Aminoácidos Excitadores/metabolismo , Impedancia Eléctrica , Ácido Glutámico/metabolismo , Transporte Biológico , Transportador 3 de Aminoácidos Excitadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA