Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 382(6671): 702-707, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943916

RESUMEN

Wildfire risks to homes are increasing, especially in the wildland-urban interface (WUI), where wildland vegetation and houses are in close proximity. Notably, we found that more houses are exposed to and destroyed by grassland and shrubland fires than by forest fires in the United States. Destruction was more likely in forest fires, but they burned less WUI. The number of houses within wildfire perimeters has doubled since the 1990s because of both housing growth (47% of additionally exposed houses) and more burned area (53%). Most exposed houses were in the WUI, which grew substantially during the 2010s (2.6 million new WUI houses), albeit not as rapidly as before. Any WUI growth increases wildfire risk to houses though, and more fires increase the risk to existing WUI houses.


Asunto(s)
Entorno Construido , Bosques , Pradera , Incendios Forestales , Entorno Construido/estadística & datos numéricos , Estados Unidos
2.
J Environ Manage ; 347: 118960, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783075

RESUMEN

There are growing concerns about increases in the size, frequency, and destructiveness of wildfire events. One commonly used mitigation strategy is the creation and maintenance of defensible space, a zone around buildings where vegetation is managed to increase potential for structures to survive during wildfires. Despite widespread acceptance and advocacy of defensible space, few studies provide empirical evidence documenting the efficacy of different fuel modification practices under real wildfire conditions. The 2018 Woolsey Fire in Los Angeles County, California, occurred a short time after high-resolution (0.07 m2) land cover data were created, providing a unique opportunity to quantify vegetation before the fire. We integrated measurements from this high-resolution land cover data with parcel data, building attributes, and environmental context. We then used Random Forests models to analyze the extent to which these factors predicted structure loss in the wildfire. Variable importance scores showed vegetation around buildings was not a strong predictor of building-level damage outcomes compared to building materials and landscape features such as paved land cover per parcel, elevation, building density, and distance to road networks. Among building materials, multi-paned windows and enclosed eaves were most highly associated with building survival. These results are consistent with other studies that conclude building materials and environmental context are more related to survivorship than defensible space.


Asunto(s)
Incendios , Incendios Forestales , California
3.
Sci Adv ; 9(38): eadh4615, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37729397

RESUMEN

Understanding of the vulnerability of populations exposed to wildfires is limited. We used an index from the U.S. Centers for Disease Control and Prevention to assess the social vulnerability of populations exposed to wildfire from 2000-2021 in California, Oregon, and Washington, which accounted for 90% of exposures in the western United States. The number of people exposed to fire from 2000-2010 to 2011-2021 increased substantially, with the largest increase, nearly 250%, for people with high social vulnerability. In Oregon and Washington, a higher percentage of exposed people were highly vulnerable (>40%) than in California (~8%). Increased social vulnerability of populations in burned areas was the primary contributor to increased exposure of the highly vulnerable in California, whereas encroachment of wildfires on vulnerable populations was the primary contributor in Oregon and Washington. Our results emphasize the importance of integrating the vulnerability of at-risk populations in wildfire mitigation and adaptation plans.


Asunto(s)
Incendios , Incendios Forestales , Humanos , Vulnerabilidad Social , Washingtón , Poblaciones Vulnerables
4.
Nature ; 621(7977): 94-99, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37468636

RESUMEN

The wildland-urban interface (WUI) is where buildings and wildland vegetation meet or intermingle1,2. It is where human-environmental conflicts and risks can be concentrated, including the loss of houses and lives to wildfire, habitat loss and fragmentation and the spread of zoonotic diseases3. However, a global analysis of the WUI has been lacking. Here, we present a global map of the 2020 WUI at 10 m resolution using a globally consistent and validated approach based on remote sensing-derived datasets of building area4 and wildland vegetation5. We show that the WUI is a global phenomenon, identify many previously undocumented WUI hotspots and highlight the wide range of population density, land cover types and biomass levels in different parts of the global WUI. The WUI covers only 4.7% of the land surface but is home to nearly half its population (3.5 billion). The WUI is especially widespread in Europe (15% of the land area) and the temperate broadleaf and mixed forests biome (18%). Of all people living near 2003-2020 wildfires (0.4 billion), two thirds have their home in the WUI, most of them in Africa (150 million). Given that wildfire activity is predicted to increase because of climate change in many regions6, there is a need to understand housing growth and vegetation patterns as drivers of WUI change.


Asunto(s)
Biomasa , Ciudades , Mapeo Geográfico , Densidad de Población , Vida Silvestre , Humanos , Bosques , Incendios Forestales/prevención & control , Incendios Forestales/estadística & datos numéricos , Urbanización , Ciudades/estadística & datos numéricos , África , Europa (Continente) , Vivienda/provisión & distribución , Vivienda/tendencias , Cambio Climático
5.
Ecol Appl ; 32(5): e2597, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35340097

RESUMEN

The wildland-urban interface (WUI) is the focus of many important land management issues, such as wildfire, habitat fragmentation, invasive species, and human-wildlife conflicts. Wildfire is an especially critical issue, because housing growth in the WUI increases wildfire ignitions and the number of homes at risk. Identifying the WUI is important for assessing and mitigating impacts of development on wildlands and for protecting homes from natural hazards, but data on housing development for large areas are often coarse. We created new WUI maps for the conterminous United States based on 125 million individual building locations, offering higher spatial precision compared to existing maps based on U.S. census housing data. Building point locations were based on a building footprint data set from Microsoft. We classified WUI across the conterminous United States at 30-m resolution using a circular neighborhood mapping algorithm with a variable radius to determine thresholds of housing density and vegetation cover. We used our maps to (1) determine the total area of the WUI and number of buildings included, (2) assess the sensitivity of WUI area included and spatial pattern of WUI maps to choice of neighborhood size, (3) assess regional differences between building-based WUI maps and census-based WUI maps, and (4) determine how building location accuracy affected WUI map accuracy. Our building-based WUI maps identified 5.6%-18.8% of the conterminous United States as being in the WUI, with larger neighborhoods increasing WUI area but excluding isolated building clusters. Building-based maps identified more WUI area relative to census-based maps for all but the smallest neighborhoods, particularly in the north-central states, and large differences were attributable to high numbers of non-housing structures in rural areas. Overall WUI classification accuracy was 98.0%. For wildfire risk mapping and for general purposes, WUI maps based on the 500-m neighborhood represent the original Federal Register definition of the WUI; these maps include clusters of buildings in and adjacent to wildlands and exclude remote, isolated buildings. Our approach for mapping the WUI offers flexibility and high spatial detail and can be widely applied to take advantage of the growing availability of high-resolution building footprint data sets and classification methods.


Asunto(s)
Incendios , Incendios Forestales , Conservación de los Recursos Naturales/métodos , Ecosistema , Vivienda , Humanos , Estados Unidos
6.
Sci Total Environ ; 806(Pt 2): 150564, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582859

RESUMEN

Prescribed fire is an increasingly important tool in restoring ecological conditions and reducing uncontrolled wildfire. Prescribed burn techniques could reduce public health impacts associated with wildfire smoke exposure. However, there have been few assessments of the health impacts of prescribed burning, and potential vulnerabilities among populations exposed to smoke from prescribed fires. Our study area focused on counties in and near U.S. National Forests - a set of lands distributed across the U.S. In county-level analyses, we compared the sociodemographic and health characteristics of areas that were exposed with those that were not exposed to prescribe burns during the years 2010-2019 on a national level and within three regions. In addition, using spatial error regression models, we looked for associations between prescribed fire exposure and health behaviors and outcomes while controlling for spatial autocorrelation. On a national level, we found disproportionate prescribed fire exposure in rural counties with higher percentage mobile home and vacant housing units, and higher percentage African-American and white populations. Regionally, we found evidence of disproportionate exposure to prescribed burns among counties with lower percentage white population, higher percentage Hispanic population and mobile homes in the southern region, and to high poverty counties with high vacancy in the western region. These findings could indicate that vulnerable populations face potential health risks from prescribed burning smoke exposure, but also that they are not missing out on the benefits of prescribed burning, which could involve considerably lower smoke exposure compared to uncontrolled wildfire. In addition, in regression analyses, we found no evidence of disproportionate health burden in exposed compared to unexposed counties. Awareness of these patterns could influence both large-scale or institutional polices about prescribed burning practice, and could be used to build decision-making factors into modeling tools and smoke management plans, as well as community-engagement around wildfire risk reduction.


Asunto(s)
Quemaduras , Incendios , Demografía , Bosques , Humanos , Humo
7.
Artículo en Inglés | MEDLINE | ID: mdl-30889810

RESUMEN

Epidemiological studies consistently show an association between wildfire-related smoke exposure and adverse respiratory health. We conducted a systematic review of evidence in published literature pertaining to heterogeneity of respiratory effects from this exposure in North America. We calculated the within-study ratio of relative risks (RRR) and 95% confidence intervals (CI) to examine heterogeneity of effect by population subgroup, and then summarized the RRRs using meta-analysis. We found evidence of a greater effect of wildfire smoke on respiratory health among females relative to males for asthma (RRR: 1.035, 95% CI: 1.013, 1.057) and chronic obstructive pulmonary disease (RRR: 1.018, 95% CI: 1.003, 1.032). There was evidence of a lower relative risk for all respiratory outcomes among youth compared to adults (RRR: 0.976, 95% CI: 0.963, 0.989). We also found wildfire smoke effects stratified by income, race, education, health behaviors, access to care, housing occupancy, geographic region, and urban/rural status. However, data were insufficient to quantitatively evaluate effect modification by these characteristics. While we found evidence that certain demographic subgroups of the population are more susceptible to respiratory health outcomes from wildfire smoke, it is unclear whether this information can be used to inform policy aimed to reduce health impact of wildfires.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Enfermedades Respiratorias/etiología , Humo/efectos adversos , Incendios Forestales , Femenino , Humanos , Masculino , América del Norte/epidemiología , Enfermedades Respiratorias/epidemiología , Riesgo , Población Rural , Factores Sexuales
8.
J Environ Manage ; 234: 464-475, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30641357

RESUMEN

Residential development is one of the most intensive and widespread land uses in the United States, with substantial environmental impacts, including changes in forest cover. However, the relationships between forest cover and residential development are complex. Contemporary forest cover reflects multiple factors, including housing density, time since development, historical land cover, and land management since development. We investigated how forest cover varies with housing density, housing age, and household income over a range of development intensities, in six ecoregions within New York State, Wisconsin, and Colorado. We find areas with residential development do retain important forest resources: across landscapes they are typically more forested than areas that remain undeveloped. However, forest cover consistently had a negative, inverse relationship with housing density, across study areas. Relationships between forest cover and housing age and household income were less common and often restricted to only portions of a given region, according to geographically weighted regression analyses. A better understanding of how forest cover varies with residential development, outside of the typically studied urban areas, will be essential to maintaining ecosystem function and services in residential landscapes.


Asunto(s)
Ecosistema , Vivienda , Colorado , Conservación de los Recursos Naturales , Bosques , New York , Clase Social , Estados Unidos , Wisconsin
9.
Environ Manage ; 62(2): 210-228, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29766223

RESUMEN

Becoming a fire adapted community that can coexist with wildfire is envisioned as a continuous, iterative process of adaptation, but it is unclear how communities may pursue adaptation. Experience with wildfire and other natural hazards suggests that disasters may open a "window of opportunity" leading to local government policy changes. We examined how destructive wildfire affected progress toward becoming fire adapted in eight locations in the United States. We found that community-level adaptation following destructive fires is most common where destructive wildfire is novel and there is already government capacity and investment in wildfire regulation and land use planning. External funding, staff capacity, and the presence of issue champions combined to bring about change after wildfire. Locations with long histories of destructive wildfire, extensive previous investment in formal wildfire regulation and mitigation, or little government and community capacity to manage wildfire saw fewer changes. Across diverse settings, communities consistently used the most common tools and actions for wildfire mitigation and planning. Nearly all sites reported changes in wildfire suppression, emergency response, and hazard planning documents. Expansion in voluntary education and outreach programs to increase defensible space was also common, occurring in half of our sites, but land use planning and regulations remained largely unchanged. Adaptation at the community and local governmental level therefore may not axiomatically follow from each wildfire incident, nor easily incorporate formal approaches to minimizing land use and development in hazardous environments, but in many sites wildfire was a focusing event that inspired reflection and adaptation.


Asunto(s)
Conservación de los Recursos Naturales/legislación & jurisprudencia , Política Ambiental/legislación & jurisprudencia , Gobierno Local , Incendios Forestales/legislación & jurisprudencia , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias , Desastres , Política Ambiental/economía , Política Ambiental/tendencias , Humanos , Estados Unidos , Incendios Forestales/economía
10.
Proc Natl Acad Sci U S A ; 115(13): 3314-3319, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531054

RESUMEN

The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Vivienda , Urbanización , Incendios Forestales/estadística & datos numéricos , Humanos , Factores de Riesgo , Estados Unidos
11.
J Environ Manage ; 215: 153-165, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29571096

RESUMEN

Public lands are typically established in recognition of their unique ecological value, yet both ecological and social values of public lands change over time, along with human distribution and land use. These transformations are evident even in developed countries with long histories of public land management, such as the United States. The 20th Century saw dramatic changes in the American population, in distribution and in racial and ethnic diversity, leading to new challenges and new roles for public lands. Our goal with this paper is to review changing demographics and implications for terrestrial protected areas in the U.S. We overview the fundamentals of population change and data, review past trends in population change and housing growth and their impacts on public lands, and then analyze the most recent decade of demographic change (2000-2010) relative to public lands. Discussions of demographic change and public lands commonly focus on the rural West, but we show that the South is also experiencing substantial change in rural areas with public lands, including Hispanic population growth. We identify those places, rural and urban, where demographic change (2000-2010), including diversification and housing growth, coincide with public lands. Understanding the current trends and long-term demographic context for recent changes in populations can help land managers and conservation scientists mitigate the effects of residential development near public lands, serve a more diverse population, and anticipate future population changes.


Asunto(s)
Conservación de los Recursos Naturales , Vivienda , Crecimiento Demográfico , Ecología , Humanos , Dinámica Poblacional , Población Rural , Estados Unidos
12.
Ecol Appl ; 26(7): 2323-2338, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755741

RESUMEN

Wildfire is globally an important ecological disturbance affecting biochemical cycles and vegetation composition, but also puts people and their homes at risk. Suppressing wildfires has detrimental ecological effects and can promote larger and more intense wildfires when fuels accumulate, which increases the threat to buildings in the wildland-urban interface (WUI). Yet, when wildfires occur, typically only a small proportion of the buildings within the fire perimeter are lost, and the question is what determines which buildings burn. Our goal was to examine which factors are related to building loss when a wildfire occurs throughout the United States. We were particularly interested in the relative roles of vegetation, topography, and the spatial arrangement of buildings, and how their respective roles vary among ecoregions. We analyzed all fires that occurred within the conterminous United States from 2000 to 2010 and digitized which buildings were lost and which survived according to Google Earth historical imagery. We modeled the occurrence as well as the percentage of buildings lost within clusters using logistic and linear regression. Overall, variables related to topography and the spatial arrangement of buildings were more frequently present in the best 20 regression models than vegetation-related variables. In other words, specific locations in the landscape have a higher fire risk, and certain development patterns can exacerbate that risk. Fire policies and prevention efforts focused on vegetation management are important, but insufficient to solve current wildfire problems. Furthermore, the factors associated with building loss varied considerably among ecoregions suggesting that fire policy applied uniformly across the United States will not work equally well in all regions and that efforts to adapt communities to wildfires must be regionally tailored.


Asunto(s)
Conservación de los Recursos Naturales , Incendios Forestales/estadística & datos numéricos , Humanos , Estados Unidos
13.
J Environ Manage ; 128: 540-7, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23831676

RESUMEN

The wildland urban interface (WUI) delineates the areas where wildland fire hazard most directly impacts human communities and threatens lives and property, and where houses exert the strongest influence on the natural environment. Housing data are a major problem for WUI mapping. When housing data are zonal, the concept of a WUI neighborhood can be captured easily in a density measure, but variations in zone (census block) size and shape introduce bias. Other housing data are points, so zonal issues are avoided, but the neighborhood character of the WUI is lost if houses are evaluated individually. Our goal was to develop a consistent method to map the WUI that is able to determine where neighborhoods (or clusters of houses) exist, using just housing location and wildland fuel data. We used structure and vegetation maps and a moving window analysis, with various window sizes representing neighborhood sizes, to calculate the neighborhood density of both houses and wildland vegetation. Mapping four distinct areas (in WI, MI, CA and CO) the method resulted in amounts of WUI comparable to those of zonal mapping, but with greater precision. We conclude that this hybrid method is a useful alternative to zonal mapping from the neighborhood to the landscape scale, and results in maps that are better suited to operational fire management (e.g., fuels reduction) needs, while maintaining consistency with conceptual and U.S. policy-specific WUI definitions.


Asunto(s)
Mapas como Asunto , Urbanización , Algoritmos , California , Colorado , Conservación de los Recursos Naturales/métodos , Ecosistema , Incendios , Vivienda , Michigan , Wisconsin
14.
Conserv Biol ; 25(3): 514-25, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21453363

RESUMEN

Understanding the spatial dimensions of hunting and prey population dynamics is important in order to estimate the sustainability of hunting in tropical forests. We investigated how hunting offtake of vertebrates differed in mixed forest and monodominant forest (composed of Gilbertiodendron dewevrei) and over different spatial extents within the hunting catchment around the logging town of Kabo, Congo. In 9 months of recall surveys with hunters, we gathered information on over 1500 hunting trips in which ungulates were 65% of the species killed and 82% of harvested biomass. Hunters supplied information on animals killed and the hunting trip, including the area visited (i.e., hunting zone; 11 separate zones within a 506 km(2) catchment or commonly hunted area). Over 65% of all animals were killed in monodominant forest, which made up 28% of the hunting catchment, and zones with small amounts of monodominant forest were used most frequently by hunters. Given the large offtakes from monodominant forests, we suggest that animal dispersal may be maintaining high, localized harvests in these areas. We believe hunters preferred to hunt in monodominant forest because the understory was accessible and that areas with small amounts of monodominant forest and large amounts of mixed forest were more productive. The variation in hunting pressure we found between and within hunting zones differs from past examinations of spatial variation in hunting offtake, where entire hunting catchments were considered population sinks and areas with low to no hunting (no-take zones) were outside hunting catchments. Future use of no-take zones to manage hunting should incorporate variability in offtake within hunting catchments.


Asunto(s)
Conservación de los Recursos Naturales , Ambiente , Recreación , Rumiantes , Animales , Congo , Dinámica Poblacional , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...