Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066430

RESUMEN

Several technological approaches have been used to develop vaccines against COVID-19, including those based on inactivated viruses, viral vectors, and mRNA. This study aimed to monitor the maintenance of anti-SARS-CoV-2 antibodies in individuals from Brazil according to the primary vaccination regimen, as follows: BNT162b2 (group 1; 22) and ChAdOx1 (group 2; 18). Everyone received BNT162b2 in the first booster while in the second booster CoronaVac, Ad26.COV2.S, or BNT162b2. Blood samples were collected from 2021 to 2023 to analyze specific RBD (ELISA) and neutralizing antibodies (PRNT50). We observed a progressive increase in anti-RBD and neutralizing antibodies in each subsequent dose, remaining at high titers until the end of follow-up. Group 1 had higher anti-RBD antibody titers than group 2 after beginning the primary regimen, with significant differences after the 2nd and 3rd doses. Group 2 showed a more expressive increase after the first booster with BNT162B2 (heterologous booster). Group 2 also presented high levels of neutralizing antibodies against the Gamma and Delta variants until five months after the second booster. In conclusion, the circulating levels of anti-RBD and neutralizing antibodies against the two variants of SARS-CoV-2 were durable even five months after the 4th dose, suggesting that periodic booster vaccinations (homologous or heterologous) induced long-lasting immunity.

2.
Vaccines (Basel) ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35632447

RESUMEN

The COVID-19 pandemic is the biggest public health threat facing the world today. Multiple vaccines have been approved; however, the emergence of viral variants such as the recent Omicron raises the possibility of booster doses to achieve adequate protection. In Brazil, the CoronaVac (Sinovac, Beijing, China) vaccine was used; however, it is important to assess the immune response to this vaccine over time. This study aimed to monitor the anti-SARS-CoV-2 antibody responses in those immunized with CoronaVac and SARS-CoV-2 infected individuals. Samples were collected between August 2020 and August 2021. Within the vaccinated cohort, some individuals had a history of infection by SARS-CoV-2 prior to immunization, while others did not. We analyzed RBD-specific and neutralizing-antibodies. Anti-RBD antibodies were detected in both cohorts, with a peak between 45-90 days post infection or vaccination, followed by a steady decline over time. In those with a previous history of COVID-19, a higher, longer, more persistent response was observed. This trend was mirrored in the neutralization assays, where infection, followed by immunization, resulted in higher, longer lasting responses which were conditioned on the presence of levels of RBD antibodies right before the vaccination. This supports the necessity of booster doses of CoronaVac in due course to prevent serious disease.

3.
Sci Rep ; 11(1): 3318, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558635

RESUMEN

Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos/genética , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/inmunología , Animales , COVID-19/virología , Camélidos del Nuevo Mundo/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Inmunización , Masculino , Pruebas de Neutralización , Biblioteca de Péptidos , Unión Proteica/genética , SARS-CoV-2/química , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Transfección
4.
J Infect Dis ; 219(12): 2015-2025, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30715407

RESUMEN

Rocio virus (ROCV) is a highly neuropathogenic mosquito-transmitted flavivirus responsible for an unprecedented outbreak of human encephalitis during 1975-1976 in Sao Paulo State, Brazil. Previous studies have shown an increased number of inflammatory macrophages in the central nervous system (CNS) of ROCV-infected mice, implying a role for macrophages in the pathogenesis of ROCV. Here, we show that ROCV infection results in increased expression of CCL2 in the blood and in infiltration of macrophages into the brain. Moreover, we show, using CCR2 knockout mice, that CCR2 expression is essential for macrophage infiltration in the brain during ROCV infection and that the lack of CCR2 results in increased disease severity and mortality. Thus, our findings show the protective role of CCR2-mediated infiltration of macrophages in the brain during ROCV infection.


Asunto(s)
Encefalitis/metabolismo , Infecciones por Flavivirus/metabolismo , Flavivirus/patogenicidad , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animales , Encéfalo , Brasil , Encefalitis/virología , Femenino , Infecciones por Flavivirus/virología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA