Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Hazard Mater ; 454: 131478, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116332

RESUMEN

Bisphenols are widely recognised as toxic compounds that potentially threaten the environment and public health. Here we report the use of cold atmospheric pressure plasma (CAP) to remove bisphenol A (BPA) and bisphenol S (BPS) from aqueous systems. Additionally, methanol was added as a radical scavenger to simulate environmental conditions. After 480 s of plasma treatment, 15-25 % of BPA remained, compared to > 80 % of BPS, with BPA being removed faster (-kt = 3.4 ms-1, half-life = 210 s) than BPS (-kt = 0.15 ms-1, half-life 4700 s). The characterisation of plasma species showed that adding a radical scavenger affects the formation of reactive oxygen and nitrogen species, resulting in a lower amount of ˙OH, H2O2, and NO2- but a similar amount of NO3-. In addition, a non-target approach enabled the elucidation of 11 BPA and five BPS transformation products. From this data, transformation pathways were proposed for both compounds, indicating nitrification with further cleavage, demethylation, and carboxylation, and the coupling of smaller bisphenol intermediates. The toxicological characterisation of the in vitro HepG2 cell model has shown that the mixture of transformation products formed during CAP is less toxic than BPA and BPS, indicating that CAP is effective in safely degrading bisphenols.


Asunto(s)
Compuestos de Bencidrilo , Peróxido de Hidrógeno , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/metabolismo , Fenoles/toxicidad , Fenoles/metabolismo
3.
Biosens Bioelectron ; 228: 115204, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913883

RESUMEN

Unwelcomed biofilms are problematic in food industries, surgical devices, marine applications, and wastewater treatment plants, essentially everywhere where there is moisture. Very recently, label-free advanced sensors such as localized and extended surface plasmon resonance (SPR) have been explored as tools for monitoring biofilm formation. However, conventional noble metal SPR substrates suffer from low penetration depth (100-300 nm) into the dielectric medium above the surface, preventing the reliable detection of large entities of single or multi-layered cell assemblies like biofilms which can grow up to a few micrometers or more. In this study, we propose using a plasmonic insulator-metal-insulator (IMI) structure (SiO2-Ag-SiO2) with a higher penetration depth based on a diverging beam single wavelength format of Kretschmann configuration in a portable SPR device. An SPR line detection algorithm for locating the reflectance minimum of the device helps to view changes in refractive index and accumulation of the biofilm in real-time down to 10-7 RIU precision. The optimized IMI structure exhibits strong penetration dependence on wavelength and incidence angle. Within the plasmonic resonance, different angles penetrate different depths, showing a maximum near the critical angle. At the wavelength of 635 nm, a high penetration depth of more than 4 µm was obtained. Compared to a thin gold film substrate, for which the penetration depth is only ∼200 nm, the IMI substrate provides more reliable results. The average thickness of the biofilm after 24 h of growth was found to be between 6 and 7 µm with ∼63% live cell volume, as estimated from confocal microscopic images using an image processing tool. To explain this saturation thickness, a graded index biofilm structure is proposed in which the refractive index decreases with the distance from the interface. Furthermore, when plasma-assisted degeneration of biofilms was studied in a semi-real-time format, there was almost no effect on the IMI substrate compared to the gold substrate. The growth rate over the SiO2 surface was higher than on gold, possibly due to differences between surface charge effects. On the gold, the excited plasmon generates an oscillating cloud of electrons, while for the SiO2 case, this does not happen. This methodology can be utilized to detect and characterize biofilms with better signal reliability with respect to concentration and size dependence.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Dióxido de Silicio , Oro , Biopelículas
4.
Nano Lett ; 22(23): 9757-9765, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36301628

RESUMEN

It is shown that surface-enhanced Raman spectroscopy (SERS) can identify bacteria based on their genomic DNA composition, acting as a "sample-distinguishing marker". Successful spectral differentiation of bacterial species was accomplished with nanogold aggregates synthesized through single-step plasma reduction of the ionic gold-containing vapored precursor. A high enhancement factor (EF = 107) in truncated coupled plasmonic particulates allowed SERS-probing at nanogram sample quantities. Simulations confirmed the occurrence of the strongest electric field confinement within nanometric gaps between gold dimers/chains from where the molecular fingerprints of bacterial DNA fragments gained photon scattering enhancement. The most prominent Raman modes linked to fundamental base-pair molecular vibrations were deconvoluted and used to proceed with nitrogenous base content estimation. The genomic composition (percentage of guanine-cytosine and adenine-thymine) was successfully validated by third-generation sequencing using nanopore technology, further proving that the SERS technique can be employed to swiftly specify bioentities by the discriminative principal-component statistical approach.


Asunto(s)
ADN Bacteriano , Espectrometría Raman , ADN/química , ADN Bacteriano/genética , Oro/química , Nanoporos , Espectrometría Raman/métodos
5.
Sci Total Environ ; 837: 155707, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537510

RESUMEN

Developing novel, fast and efficient ecologically benign processes for removing organic contaminants is important for the continued development of water treatment. For this reason, this study investigates the implementation of Cold Atmospheric pressure Plasma (CAP) generated in ambient air as an efficient tool for the removal of Bisphenol A (BPA) and Bisphenol S (BPS)-known endocrine disrupting compounds in water and wastewater, by monitoring degradation kinetics and its transformation products. The highest removal efficiencies of BPA (>98%) and BPS (>70%) were obtained after 480 s of CAP exposure. A pseudo-first-order kinetic revealed that BPA (-kt = 4.4 ̶ 9.0 ms-1) degrades faster than BPS (-kt = 0.4 ̶ 2.4 ms-1) and that the degradation is also time- and CAP power-dependent, while the initial concentration or matrix type had a negligible effect. This study also tentatively identified three previously reported and one novel transformation product of BPA and four novel transformation products of BPS. Their postulated structures suggested similar breakdown mechanisms, i.e., hydroxylation followed by ring cleavage. The results demonstrate that CAP technology is an effective process for the degradation of both BPA and BPS without the need for additional chemicals, indicating that CAP is a promising technology for water and wastewater remediation worthy of further investigation and optimization.


Asunto(s)
Gases em Plasma , Contaminantes Químicos del Agua , Presión Atmosférica , Compuestos de Bencidrilo/análisis , Fenoles , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
6.
Small ; 17(49): e2103677, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636140

RESUMEN

Mycotoxins are widespread chemical entities in the agriculture and food industries that can induce cancer growth and immune deficiency, posing a serious health threat for humankind. These hazardous compounds are produced naturally by various molds (fungi) that contaminate different food products and can be detected in cereals, nuts, spices, and other food products. However, their detection, especially at minimally harmful concentrations, remains a serious analytical challenge. This research shows that high-performing plasmonic substrates (analytical enhancement factor = 5 × 107 ) based on plasma-grown vertical hollow carbon nanotubes can be applied for immediate detection of the most toxic mycotoxins. Due to excellent sensitivity allowing operation at ppb concentrations, it is possible to collect vibrational fingerprints of aflatoxin B1 , zearalenone, alternariol, and fumonisin B1 , highlighting the key spectral differences between them using principal component analysis. Regarding time-consuming conventional methods, including thin-layer chromatography, gas chromatography, high-performance liquid chromatography, and enzyme-linked immunosorbent assay, the designed surface-enhanced Raman spectroscopy substrates provide a clear roadmap to reducing the detection time-scale of mycotoxins down to seconds.


Asunto(s)
Micotoxinas , Nanoestructuras , Nanotubos de Carbono , Cromatografía Líquida de Alta Presión , Micotoxinas/análisis , Espectrometría Raman
7.
ACS Appl Mater Interfaces ; 13(39): 46303-46316, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34569240

RESUMEN

The antibacterial and cell-proliferative character of atmospheric pressure plasma jets (APPJs) helps in the healing process of chronic wounds. However, control of the plasma-biological target interface remains an open issue. High vacuum ultraviolet/ultraviolet (VUV/UV) radiation and RONS flux from plasma may cause damage of a treated tissue; therefore, controlled interaction is essential. VUV/UV emission from argon APPJs and radiation control with aerosol injection in plasma effluent is the focus of this research. The aerosol effect on radiation is studied by a fluorescent target capable of resolving the plasma oxidation footprint. In addition, DNA damage is evaluated by plasmid DNA radiation assay and cell proliferation assay to assess safety aspects of the plasma jet, the effect of VUV/UV radiation, and its control with aerosol injection. Inevitable emission of VUV/UV radiation from plasmas during treatment is demonstrated in this work. Plasma has no antiproliferative effect on fibroblasts in short treatments (t < 60 s), while long exposure has a cytotoxic effect, resulting in decreased cell survival. Radiation has no effect on cell survival in the medium due to absorption. However, a strong cytotoxic effect on the attached fibroblasts without the medium is apparent. VUV/UV radiation contributes 70% of the integral plasma effect in induction of single- and double-strand DNA breaks and cytotoxicity of the attached cells without the medium. Survival of the attached cells increases by 10% when aerosol is introduced between plasma and the cells. Injection of aerosol in the plasma effluent can help to control the plasma-cell/tissue interaction. Aerosol droplets in the effluent partially absorb UV emission from the plasma, limiting photon flux in the direction of the biological target. Herein, cold and safe plasma-aerosol treatment and a safe operational mode of treatment are demonstrated in a murine model.


Asunto(s)
Aerosoles/toxicidad , Argón/toxicidad , Gases em Plasma/toxicidad , Aerosoles/efectos de la radiación , Animales , Argón/efectos de la radiación , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , ADN/efectos de los fármacos , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Roturas del ADN de Cadena Simple/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de la radiación , Femenino , Ratones Endogámicos BALB C , Gases em Plasma/efectos de la radiación , Plásmidos/efectos de los fármacos , Plásmidos/efectos de la radiación , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta
8.
J Hazard Mater ; 403: 123593, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264852

RESUMEN

Aflatoxins are considered to be a critical dietary risk factor for humans, with aflatoxin B1 (AFB1) identified by the WHO as one of the most potent natural group 1 carcinogen. Despite this, more than half of the world's population is chronically exposed, resulting in up to 170,000 annual cases of human hepatocellular carcinoma cancer. Here we report an easily implemented approach using non-equilibrium plasma for targeted degradation of AFB1. Apart from reaching the 100 % decontamination in less than 120 s of treatment, this is the first study that combines hypersensitive analytical methods such as high-resolution mass spectroscopy (HRMS) and nuclear magnetic resonance spectroscopy (NMR) to provide a detailed description of CAP mediated AFB1 degradation. We identify rapid scission of the vinyl bond between 8- and 9-position on the terminal furan ring of AFB1 as being of paramount importance for the suppression of toxic potential, which is confirmed by the examination of both cytotoxicity and genotoxicity. The plasma reactive species mediated degradation pathways are elucidated, and it is demonstrated that the approach not only renders AFB1 harmless but does so in order of magnitude less time than UV irradiation as one of the other non-thermal methods currently under investigation.


Asunto(s)
Aflatoxinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Aflatoxina B1/toxicidad , Humanos , Espectrometría de Masas
9.
Mater Sci Eng C Mater Biol Appl ; 119: 111496, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321597

RESUMEN

Antibacterial coating is an important strategy preventing bacterial colonization and biofilm formation. One-step synthesis of nanocapsule-containing antibacterial coatings with controlled release of Ag+ ions was achieved in the current work by aerosol-assisted atmospheric pressure plasma deposition. The experimental parameters of deposition including the discharge power, silver nitrate concentration, aerosol flow rate, continuous and pulsed mode of operation were studied in order to analyze their effects on surface morphology and chemical composition of the coating. Formation of nanocapsules embedded in the polymeric coating was observed. A core-shell structure was found for nanocapsule with silver in the core and polymer in the shell. Antibacterial coatings on polyethylene terephthalate film were studied in terms of Ag+ ion release, antibacterial properties against Escherichia coli and Staphylococcus aureus, and cytotoxicity with murine fibroblasts. Two-phase release kinetics of Ag+ ions was observed as initially a short-term burst release followed by a long-term slow release. It was revealed that high antibacterial efficiency of the coatings deposited on polyethylene terephthalate films can be coupled with low cytotoxicity. These biocompatible antibacterial coatings are very promising in different fields including biological applications.


Asunto(s)
Nanocápsulas , Animales , Antibacterianos/farmacología , Presión Atmosférica , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli , Ratones , Staphylococcus aureus
10.
Nanomaterials (Basel) ; 10(4)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224934

RESUMEN

Polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) dispersed in ethanol, water and water/alginate were used to functionalize untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 fabric (PA66). The PVP-AgNPs dispersions were deposited onto PA66 by spray and exhaustion methods. The exhaustion method showed a higher amount of deposited AgNPs. Water and water-alginate dispersions presented similar results. Ethanol amphiphilic character showed more affinity to AgNPs and PA66 fabric, allowing better uniform surface distribution of nanoparticles. Antimicrobial effect in E. coli showed good results in all the samples obtained by exhaustion method but using spray method only the DBD plasma treated samples displayed antimicrobial activity (log reduction of 5). Despite the better distribution achieved using ethanol as a solvent, water dispersion samples with DBD plasma treatment displayed better antimicrobial activity against S. aureus bacteria in both exhaustion (log reduction of 1.9) and spray (methods log reduction of 1.6) due to the different oxidation states of PA66 surface interacting with PVP-AgNPs, as demonstrated by X-Ray Photoelectron Spectroscopy (XPS) analysis. Spray method using the water-suspended PVP-AgNPs onto DBD plasma-treated samples is much faster, less agglomerating and uses 10 times less PVP-AgNPs dispersion than the exhaustion method to obtain an antimicrobial effect in both S. aureus and E. coli.

11.
Toxins (Basel) ; 11(4)2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013734

RESUMEN

Mycotoxins, the toxic secondary metabolites of mould species, are a growing global concern, rendering almost 25% of all food produced unfit for human or animal consumption, thus placing immense pressure on the food supply chain. Cold Atmospheric pressure Plasma (CAP) represents a promising, low-cost, and environmentally friendly means to degrade mycotoxins with negligible effect on the quality of food products. Despite this promise, the study of CAP-mediated mycotoxin degradation has been limited to a small subset of the vast number of mycotoxins that plague the food supply chain. This study explores the degradation of aflatoxins, trichothecenes, fumonisins, and zearalenone using CAP generated in ambient air. CAP treatment was found to reduce aflatoxins by 93%, trichothecenes by 90%, fumonisins by 93%, and zearalenone by 100% after 8 minutes exposure. To demonstrate the potential of CAP-mediated mycotoxin degradation against more conventional methods, its efficiency was compared against ultraviolet C (UVC) light irradiation. In all cases, CAP was found to be considerably more efficient than UVC, with aflatoxin G1 and zearalenone being completely degraded, levels that could not be achieved using UVC irradiation.


Asunto(s)
Descontaminación/métodos , Contaminación de Alimentos/prevención & control , Micotoxinas/análisis , Aire , Presión Atmosférica , Gases em Plasma
12.
Environ Sci Technol ; 53(4): 1893-1904, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30657659

RESUMEN

Fungal contamination of surfaces is a global burden, posing a major environmental and public health challenge. A wide variety of antifungal chemical agents are available; however, the side effects of the use of these disinfectants often result in the generation of toxic residues raising major environmental concerns. Herein, atmospheric pressure air plasma generated by a surface barrier discharge (SBD) is presented as an innovative green chemical method for fungal inactivation, with the potential to become an effective replacement for conventional chemical disinfection agents, such as Virkon. Using Aspergillus flavus spores as a target organism, a comparison of plasma based decontamination techniques is reported, highlighting their respective efficiencies and uncovering their underpining inactivation pathways. Tests were performed using both direct gaseous plasma treatment and an indirect treatment using a plasma activated aqueous broth solution (PAB). Concentrations of gaseous ozone and nitrogen oxides were determined with Fourier-transform infrared spectroscopy (FTIR) and Optical emission spectroscopy (OES), whereas hydrogen peroxides, nitrites, nitrates, and pH were measured in PAB. It is demonstrated that direct exposure to the gaseous plasma effluent exhibited superior decontamination efficiency and eliminated spores more effectively than Virkon, a finding attributed to the production of a wide variety of reactive oxygen and nitrogen species within the plasma.


Asunto(s)
Desinfectantes , Gases em Plasma , Presión Atmosférica , Descontaminación , Desinfección , Esporas Fúngicas
13.
Bioengineered ; 8(6): 679-685, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28453429

RESUMEN

Worldwide, millions of patients are affected annually by healthcare-associated infection (HCAI), impacting up to 80,000 patients in European Hospitals on any given day. This represents not only public health risk, but also an economic burden. Complementing routine hand hygiene practices, cleaning and disinfection, antimicrobial coatings hold promise based, in essence, on the application of materials and chemicals with persistent bactericidal or -static properties onto surfaces or in textiles used in healthcare environments. The focus of considerable commercial investment and academic research energies, such antimicrobial coating-based approaches are widely believed to have potential in reduction of microbial numbers on surfaces in clinical settings. This belief exists despite definitive evidence as to their efficacy and is based somewhat on positive studies involving, for example, copper, silver or gold ions, titanium or organosilane, albeit under laboratory conditions. The literature describes successful delay and/or prevention of recontamination following conventional cleaning and disinfection by problematic microbes such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), among others. However, there is a scarcity of studies assessing antimicrobial surfaces other than copper in the clinical environment, and a complete lack of published data regarding the successful implementation of these materials on clinically significant outcomes (including HCAI). Through its Cooperation in Science and Technology program (COST), the European Commission has funded a 4-year initiative to establish a network of stakeholders involved in development, regulation and use of novel anti-microbial coatings for prevention of HCAI. The network (AMiCI) comprises participants of more than 60 universities, research institutes and companies across 29 European countries and, to-date, represents the most comprehensive consortium targeting use of these emergent technologies in healthcare settings. More specifically, the network will prioritise coordinated research on the effects (both positive and negative) of antimicrobial coatings in healthcare sectors; know-how regarding availability and mechanisms of action of (nano)-coatings; possible adverse effects of such materials (e.g., potential emergence of microbial resistance or emission of toxic agents into the environment); standardised performance assessments for antimicrobial coatings; identification and dissemination of best practices by hospitals, other clinical facilities, regulators and manufacturers.


Asunto(s)
Infección Hospitalaria/prevención & control , Antiinfecciosos/química , Antiinfecciosos/uso terapéutico , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/efectos de los fármacos
14.
Int J Antimicrob Agents ; 49(3): 375-378, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28161488

RESUMEN

Mixed-species biofilms reflect the natural environment of many pathogens in clinical settings and are highly resistant to disinfection methods. An indirect cold atmospheric-pressure air-plasma system was evaluated under two different discharge conditions for its ability to kill representative Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) pathogens. Plasma treatment of individual 24-h-old biofilms and mixed-species biofilms that contained additional species (Enterococcus faecalis and Klebsiella pneumoniae) was considered. Under plasma conditions that favoured the production of reactive nitrogen species (RNS), individual P. aeruginosa biofilms containing ca. 5.0 × 106 CFU were killed extremely rapidly, with no bacterial survival detected at 15 s of exposure. Staphylococcus aureus survived longer under these conditions, with no detectable growth after 60 s of exposure. In mixed-species biofilms, P. aeruginosa survived longer but all species were killed with no detectable growth at 60 s. Under plasma conditions that favoured the production of reactive oxygen species (ROS), P. aeruginosa showed increased survival, with the lower limit of detection reached by 120 s, and S. aureus was killed in a similar time frame. In the mixed-species model, bacterial kill was biphasic but all pathogens showed viable cells after 240 s of exposure, with P. aeruginosa showing significant survival (ca. 3.6 ± 0.6 × 106 CFU). Overall, this study shows the potential of indirect air plasma treatment to achieve significant bacterial kill, but highlights aspects that might affect performance against key pathogens, especially in real-life settings within mixed populations.


Asunto(s)
Presión Atmosférica , Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Gases em Plasma/farmacología , Recuento de Colonia Microbiana , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Viabilidad Microbiana/efectos de los fármacos , Factores de Tiempo
15.
Biointerphases ; 11(2): 029808, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27154919

RESUMEN

Estimation of thrombogenic surface properties is an important aspect of hemocompatibility studies. To improve our understanding of interaction between blood and biomaterial surfaces, there is a need to employ standardized methods that are both effective and efficient. This contribution details a systematic approach for the in vitro analysis of plasma modified polymer surfaces and human blood platelet interaction, following the recently introduced ISO 10933-4 guidelines. A holistic multistep process is presented that considers all aspects of testing procedure, including blood collection, platelet function testing, and incubation parameters, right through to a comparison and evaluation of the different methods and analysis available. In terms of detection and analysis, confocal light microscopy is shown to offer many advantages over the widely used scanning electron microscopy technique; this includes simpler, less-invasive sample preparation, and less time-consuming analysis procedure. On the other hand, as an alternative to microscopy techniques, toxicology sulforhodamine B based assay (TOX assay) was also evaluated. It has been shown that the assay could be used for rapid estimation of relative concentration of blood platelets on the surface of plasma treated materials, especially when samples do not allow the implementation of microscopy techniques.


Asunto(s)
Coagulación Sanguínea , Plaquetas/fisiología , Materiales Biocompatibles Revestidos , Tamizaje Masivo/métodos , Ensayo de Materiales/métodos , Propiedades de Superficie , Humanos , Tamizaje Masivo/normas , Ensayo de Materiales/normas , Microscopía Confocal , Microscopía Electrónica de Rastreo , Toxicología
16.
Colloids Surf B Biointerfaces ; 133: 278-85, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26119372

RESUMEN

Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts.


Asunto(s)
Compuestos de Anilina , Coagulación Sanguínea , Plaquetas/citología , Adhesión Celular , Humanos , Espectrofotometría Ultravioleta
17.
Biointerphases ; 10(2): 029405, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26104191

RESUMEN

Energy deficiency, global poverty, chronic hunger, chronic diseases, and environment conservation are among the major problems threatening the whole mankind. Nanostructure-based technologies could be a possible solution. Such techniques are now used for the production of many vitally important products including cultured and fermented food, antibiotics, various medicines, and biofuels. On the other hand, the nanostructure-based technologies still demonstrate low efficiency and controllability, and thus still are not capable to decisively address the global problems. Furthermore, future technologies should ensure lowest possible environmental impact by implementing green production principles. One of the most promising approaches to address these challenges are the sophisticatedly engineered biointerfaces. Here, the authors briefly evaluate the potential of the plasma-based techniques for the fabrication of complex biointerfaces. The authors consider mainly the atmospheric and inductively coupled plasma environments and show several examples of the artificial plasma-created biointerfaces, which can be used for the biotechnological and medical processes, as well as for the drug delivery devices, fluidised bed bioreactors, catalytic reactors, and others. A special attention is paid to the plasma-based treatment and processing of the biointerfaces formed by arrays of carbon nanotubes and graphene flakes.


Asunto(s)
Nanoestructuras , Nanotecnología/métodos , Gases em Plasma , Biotecnología/métodos , Nanomedicina/métodos
18.
Materials (Basel) ; 7(3): 2014-2029, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-28788553

RESUMEN

Improvement in hemocompatibility of highly oriented pyrolytic graphite (HOPG) by formation of nanostructured surface by oxygen plasma treatment is reported. We have showed that by appropriate fine tuning of plasma and discharge parameters we are able to create nanostructured surface which is densely covered with nanocones. The size of the nanocones strongly depended on treatment time. The optimal results in terms of material hemocompatibility were obtained after treatment with oxygen plasma for 15 s, when both the nanotopography and wettability were the most favorable, since marked reduction in adhesion and activation of platelets was observed on this surface. At prolonged treatment times, the rich surface topography was lost and thus also its antithrombogenic properties. Chemical composition of the surface was always more or less the same, regardless of its morphology and height of the nanocones. Namely, on all plasma treated samples, only a few atomic percent of oxygen was found, meaning that plasma caused mostly etching, leading to changes in the surface morphology. This indicates that the main preventing mechanism against platelets adhesion was the right surface morphology.

19.
Phys Chem Chem Phys ; 13(33): 15175-81, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21776515

RESUMEN

Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.


Asunto(s)
Electrones , Temperatura , Agua/química , Óxido de Magnesio/química , Modelos Moleculares , Propiedades de Superficie
20.
Chemphyschem ; 11(17): 3704-12, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21077091

RESUMEN

Despite many important applications of α-Fe(2)O(3) and Fe doped SnO(2) in semiconductors, catalysis, sensors, clinical diagnosis and treatments, one fundamental issue that is crucial to these applications remains theoretically equivocal--the reversible carrier-type transition between n- and p-type conductivities during gas-sensing operations. Herein, we present an unambiguous and rigorous theoretical analysis in order to explain why and how the oxygen vacancies affect the n-type semiconductors α-Fe(2)O(3) and Fe-doped SnO(2), in which they are both electronically and chemically transformed into a p-type semiconductor. Furthermore, this reversible transition also occurs on the oxide surfaces during gas-sensing operation due to physisorbed gas molecules (without any chemical reaction). We make use of the ionization energy theory and its renormalized ionic displacement polarizability functional to reclassify, generalize and explain the concept of carrier-type transition in solids, and during gas-sensing operation. The origin of such a transition is associated with the change in ionic polarizability and the valence states of cations in the presence of oxygen vacancies and physisorped gas molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...