Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 61(44): 17719-17729, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36274232

RESUMEN

Novel hydrophilic ligands to selectively separate Am(III) are synthesized: 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol) (PrOH-BPTD) and 3,3'-([2,2'-bipyridine]-6,6'-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(ethan-1-ol) (EtOH-BPTD). The complexation of An(III) and Ln(III) with PrOH- and EtOH-BPTD is studied by time-resolved laser fluorescence spectroscopy. [ML2]3+ is found for both Cm(III) and Eu(III), while [ML]3+ is only formed with Cm(III). Stability constants show a preferential coordination of Cm(III) over Eu(III) with PrOH-BPTD being the stronger ligand. The distribution of Am(III), Cm(III), and Ln(III) between an organic phase containing the extracting agent N,N,N',N'-tetra-n-octyl-3-oxapentanediamide (TODGA) and aqueous phases containing PrOH-BPTD is studied as a function of time and temperature as well as the TODGA, BPTD, and HNO3 concentrations. A system composed of 0.2 mol/L TODGA and 0.04 mol/L PrOH-BPTD in 0.33-0.39 mol/L HNO3 allows for selective Am(III) back-extraction into the aqueous phase while keeping Cm(III) and Ln(III) in the organic phase, marking PrOH-BPTD as an excellent complexant for an optimized AmSel process (Am(III) selective extraction).

2.
Chem Commun (Camb) ; 58(76): 10667-10670, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36063119

RESUMEN

A new general synthetic route to selective actinide extracting ligands for spent nuclear fuel reprocessing has been established. The amide-functionalized ligands separate Am(III) and Cm(III) from the lanthanides with high selectivities and show rapid rates of metal extraction. The ligands retain the advantages of the analogous unfunctionalized ligands derived from camphorquinone, whilst also negating their main drawback; precipitate formation when in contact with nitric acid. These studies could enable the design of improved solvent extraction processes for closing the nuclear fuel cycle.

3.
MRS Adv ; 7(5-6): 100-104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646392

RESUMEN

Autoclave leaching experiments are conducted on three well-characterised, irradiated, and cladded mixed oxide fuel-rod segments with burnups ranging from 29 GWd/tHM to 52 GWd/tHM to investigate the instant release fraction of fission gases and long-lived fission products and to assess the long-term fuel matrix corrosion. The segments are exposed to bicarbonate solutions as reference groundwater at neutral pH and a synthetic young cementitious water at pH 13.5 under reducing atmosphere (4 vol% H2 in Ar at 40 bar pressure), since 2018. The initial leaching results for the fission products caesium and iodine as representative elements of the instant release fraction were found to depend on the leachate composition as well as on the fuel burnup.

4.
RSC Adv ; 12(20): 12416-12426, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35480374

RESUMEN

Reprocessing of spent nuclear fuel aims at improving resource efficiency and reducing its radiotoxicity and heat production in the long term. The necessary separation of certain metal ions from the spent fuel solutions can be achieved using different solvent extraction processes. For the scenario of the EURO-GANEX process, the use of the new, modified diglycolamide 2,2'-oxybis(N,N-didecylpropanamide) (mTDDGA) was recently proposed to simplify the current solvent composition and reduce extraction of fission products. Before further developing the process based on this new ligand, its stability under ionizing radiation conditions needs to be studied. For this reason, gamma irradiation experiments were conducted followed by analyses with high performance liquid chromatography coupled to a mass spectrometer (HPLC-MS). The determined degradation rate of mTDDGA was found to be lower than that of the reference molecule N,N,N',N'-tetra-n-octyl-diglycolamide (TODGA). Many identified degradation compounds of both molecules are analogues showing the same bond breaking, although also unreported de-methylation, double/triple de-alkylation and n-dodecane addition products were observed.

5.
Front Chem ; 9: 705024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869199

RESUMEN

Available data on the dependence of the equilibrium chemical potential of oxygen on degrees of doping, z, and non-stoichiometry, x, y, in U1-z Ln z O2+0.5(x-y) fluorite solid solutions and data on the dependence of the lattice parameter, a, on the same variables are combined within a unified structural-thermodynamic model. The thermodynamic model fits experimental isotherms of the oxygen potential under the assumptions of a non-ideal mixing of the endmembers, UO2, UO2.5, UO1.5, LnO1.5, and Ln 0.5U0.5O2, and of a significant reduction in the configurational entropy arising from short-range ordering (SRO) within cation-anion distributions. The structural model further investigates the SRO in terms of constraints on admissible values of cation coordination numbers and, building on these constraints, fits the lattice parameter as a function of z, y, and x. Linking together the thermodynamic and structural models allows predicting the lattice parameter as a function of z, T and the oxygen partial pressure. The model elucidates contrasting structural and thermodynamic changes due to the doping with LaO1.5, on the one hand, and with NdO1.5 and GdO1.5, on the other hand. An increased oxidation resistance in the case of Gd and Nd is attributed to strain effects caused by the lattice contraction due to the doping and to an increased thermodynamic cost of a further contraction required by the oxidation.

6.
RSC Adv ; 11(11): 6014-6021, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35423126

RESUMEN

The extraction of Am(iii), Cm(iii) and Eu(iii) by 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4BTPhen) from nitric acid solution was studied using the ionic liquid Aliquat-336 nitrate ([A336][NO3]) as diluent. Results show a high selectivity of the solvent for Am(iii) and Cm(iii) over Eu(iii), but rather slow extraction kinetics. The kinetics of CyMe4BTPhen were largely improved by the addition of 0.005 mol L-1 N,N,N',N'-tetra-n-octyl-diglycolamide (TODGA) as a phase transfer reagent and by the use of 1-octanol as co-diluent. The addition of the phase transfer catalyst and co-diluent did not compromise the selectivity towards the actinide/lanthanide separation and thus this four-component system can be successfully applied to separate Am(iii) and Cm(iii) from the lanthanides.

7.
Chemistry ; 26(2): 428-437, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31489718

RESUMEN

The synthesis and evaluation of three novel bis-1,2,4-triazine ligands containing five-membered aliphatic rings are reported. Compared to the more hydrophobic ligands 1-3 containing six-membered aliphatic rings, the distribution ratios for relevant f-block metal ions were approximately one order of magnitude lower in each case. Ligand 10 showed an efficient, selective and rapid separation of AmIII and CmIII from nitric acid. The speciation of the ligands with trivalent f-block metal ions was probed using NMR titrations and competition experiments, time-resolved laser fluorescence spectroscopy and X-ray crystallography. While the tetradentate ligands 8 and 10 formed LnIII complexes of the same stoichiometry as their more hydrophobic analogues 2 and 3, significant differences in speciation were observed between the two classes of ligand, with a lower percentage of the extracted 1:2 complexes being formed for ligands 8 and 10. The structures of the solid state 1:1 and 1:2 complexes formed by 8 and 10 with YIII , LuIII and PrIII are very similar to those formed by 2 and 3 with LnIII . Ligand 10 forms CmIII and EuIII 1:2 complexes that are thermodynamically less stable than those formed by ligand 3, suggesting that less hydrophobic ligands form less stable AnIII complexes. Thus, it has been shown for the first time how tuning the cyclic aliphatic part of these ligands leads to subtle changes in their metal ion speciation, complex stability and metal extraction affinity.

8.
Dalton Trans ; 48(45): 17005-17013, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31691689

RESUMEN

The radiation chemistry of a series of hydrophilic diglycolamides (DGAs: TEDGA, Me-TEDGA, Me2-TEDGA, and TPDGA) has been investigated under neutral pH, concentrated aqueous nitrate solution conditions. A combination of steady-state gamma and time-resolved pulsed electron irradiation experiments, supported by advanced analytical techniques and multi-scale modeling calculations, have demonstrated that: (i) the investigated hydrophilic DGAs undergo first-order decay with an average dose constant of (-3.18 ± 0.23) × 10-6 Gy-1; (ii) their degradation product distributions are similar to those under pure water conditions, except for the appearance of NOx adducts; and (iii) radiolysis is driven by hydroxyl and nitrate radical oxidation chemistry moderated by secondary degradation product scavenging reactions. Overall, the radiolysis of hydrophilic DGAs in concentrated, aqueous nitrate solutions is significantly slower and less structurally sensitive than under pure water conditions, similar to their lipophilic analogs. Acid hydrolysis, not radiolysis, is expected to limit their useful lifetime. These findings are promising for the deployment of hydrophilic DGAs as actinide aqueous phase stripping and hold-back agents, due to the presence of high concentrations of nitrate in envisioned large-scale process conditions.

9.
Chemistry ; 25(21): 5507-5513, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30720905

RESUMEN

When considering f elements, solvent extraction is primarily used for the removal of lanthanides from ore and their recycling, as well as for the separation of actinides from used nuclear fuel. Understanding the complexation mechanism of metal ions with organic extractants, particularly the influence of their molecular structure on complex formation is of fundamental importance. Herein, we report an extraordinary (up to two orders of magnitude) change in the extraction efficiency of f elements with two diastereomers of dimethyl tetraoctyl diglycolamide (Me2 -TODGA), which only differ in the orientation of a single methyl group. Solvent extraction techniques, extended X-ray absorption fine structure (EXAFS) measurements, and density functional theory (DFT) based ab initio calculations were used to understand their complex structures and to explain their complexation mechanism. We show that the huge differences observed in extraction selectivity results from a small change in the complexation of nitrate counter-ions caused by the different orientation of one methyl group in the backbone of the extractant. The obtained results give a significant new insight into metal-ligand complexation mechanisms, which will promote the development of more efficient separation techniques.

10.
Inorg Chem ; 57(17): 11201-11216, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30125085

RESUMEN

Seven novel open-framework uranyl germanates, K2(UO2)GeO4, K6(UO2)3Ge8O22, α-Cs2(UO2)Ge2O6, ß-Cs2(UO2)Ge2O6, Cs2(UO2)GeO4, and A(UO2)3(Ge2O7)2 (A = [NaK6Cl]6+, [Na2Cs6Cl2]6+), were grown from different mixed molten fluxes. The three-dimensional (3D) structure of K2(UO2)GeO4 with 8-ring channels can be built upon [UGe4] pentamer secondary building units (SBUs). The 3D framework of K6(UO2)3Ge8O22 with trapezoid (Ge8O22)12- clusters consists of two types of [UGe4] pentamers. The 3D framework of α-Cs2(UO2)Ge2O6 with 10-ring channels, crystallizing in the P21/ n space group, is constructed by [UGe4] pentamers. The structure of ß-Cs2(UO2)Ge2O6 contains achter (eight) single germanate chains and is composed of [UGe6] heptamers and [UGe4] pentamers. The structure of Cs2(UO2)GeO4 with hexagonal 10-ring channels is composed of [U3Ge4] heptamers and twisting five-fold GeO4 tetrahedra in four-membered Ge4O12 rings occur. 3D frameworks of NaK6Cl(UO2)3(Ge2O7)2 (space group Pnnm) and Na2Cs6Cl2(UO2)3(Ge2O7)2 ( P21/ c) can be constructed from the same SBUs [UGe4] pentamers. Thermal stability of salt-inclusions was studied by TG and PXRD analysis. Analysis of charge density for the U-Si-O system indicates that the polymerization of silicate units reduces the cross-links of the 3D frameworks. The concept of SBUs combined with the cutting and gluing strategy was applied to understand and analyze the distinct 8-, 10-, 12-, and 14- membered channels for the uranyl germanate family. The charge density of all known 3D U-Si/Ge-O frameworks has been investigated, which shows strong correlations with chemical composition of corresponding phases. The increase of Si/O (Ge/O) ratios in silicate units results in the decrease of negative charge density. Moreover, the charge density increases with decreasing countercation size within the same Si/O ratio. The correlations can be used to predict inclusion phase formation within U-Si/Ge-O families. Raman spectra of the studied uranyl germanates were measured, and bands were assigned on the basis of structural features.

11.
Inorg Chem ; 56(14): 7861-7869, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28665602

RESUMEN

Previous studies have identified the TPAEN ligand as a potentially appropriate complexing agent in solvent extraction processes for the separation of americium (Am(III)) from the fission products including lanthanide (Ln(III)) and curium (Cm(III)) ions, a challenging issue for advanced nuclear fuel recycling. To get insight into the selectivity of this ligand, the complexation of selected trivalent Ln(III) and actinide (An(III)) cations with TPAEN was investigated in solution. First, the structure and stoichiometry of the TPAEN complex with Am(III) were characterized by extended X-ray absorption fine structure spectroscopy (EXAFS). Then complexation constants and thermodynamics data were acquired for the complexes using different methods: microcalorimetry for the Ln(III) cations, time-resolved laser fluorescence spectroscopy (TRLFS) for Eu(III) and Cm(III), and UV-visible spectroscopy for Nd(III) and Am(III).

12.
Inorg Chem ; 56(15): 9311-9320, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28718634

RESUMEN

Two novel alkali-metal uranyl borophosphates have been prepared and characterized for the first time, namely, K5(UO2)2[B2P3O12(OH)]2(OH)(H2O)2 and K2(UO2)12[B(H2PO4)4](PO4)8(OH)(H2O)6 denoted as KUPB1 and KUPB2, respectively. KUPB1 was obtained hydrothermally at 220 °C and crystallizes in a monoclinic structure in the chiral space group P21. The unit cell parameters of KUPB1 are a = 6.7623(2) Å, b = 19.5584(7) Å, c = 11.0110(4) Å, α = γ = 90°, ß = 95.579(3)°, and V = 1449.42(8) Å3. It features a unique three-dimensional (3D) open-framework structure, composed of two corner-sharing linked one-dimensional (1D) anionic borophosphates (BP), [B2P3O13]5-, along the a axis and uranyl phosphate (UP), [(UO2)(PO4)3]7-, chains along the c axis, further bridged by PO4 tetrahedra. Multi-intersectional channels can be observed within the structure, in which the largest 11-ring (11-R) tunnel size is ∼7.0 Å × 8.8 Å. Its simplified framework can be described as a new 4-nodal net topological type with a point symbol of {4.84.10}{42.6}2{43.62.83.102}{82.10}. By modification of the synthetic conditions of KUPB1 through an increase in the amount of H3BO3 as flux 4-fold and a reduction of water as the reaction medium, the novel compound KUPB2 is generated. The unit cell parameters of KUPB2 are a = b = 21.8747(3) Å, c = 7.0652(2) Å, α = ß = γ = 90°, and V = 3380.72(12) Å3. KUPB2 crystallizes in a tetragonal structure in the polar space group I4̅2m, and its structure is based on a highly complex 3D framework, {(UO2)12[B(PO4)4](PO4)8}9-, in which 1D 8-R UP [(UO2)(PO4)]- tubes can be observed along the c axis. The [(UO2)(PO4)]- tubes consist of three uranyl chains along the c axis, which are linked alternately by [PO4]3- tetrahedra. Those isolated 1D [(UO2)(PO4)]- tubes are further bridged through [(UO2)4B(PO4)4]- clusters, forming an exceptional 3D open-framework structure. Its simplified cation network is a new 5-nodal net topological type such as {32.43.5.62.7.8}8{34.45.54.62}8{4.62.83}4{42.6}4{44.62}. Their facile hydrothermal synthetic routes, porous structure topology, thermal stability, and Raman spectroscopy properties are reported and discussed.

13.
Dalton Trans ; 44(41): 18049-56, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26412572

RESUMEN

The stability against gamma radiation of MeTODGA (methyl tetraoctyldiglycolamide) and Me2TODGA (dimethyl tetraoctyldiglycolamide), derivatives from the well-known extractant TODGA (N,N,N',N'-tetraoctyldiglycolamide), were studied and compared. Solutions of MeTODGA and Me2TODGA in alkane diluents were subjected to (60)Co γ-irradiation in the presence and absence of nitric acid and analyzed using LC-MS to determine their rates of radiolytic concentration decrease, as well as to identify radiolysis products. The results of product identification from three different laboratories are compared and found to be in good agreement. The diglycolamide (DGA) concentrations decreased exponentially with increasing absorbed dose. The MeTODGA degradation rate constants (dose constants) were uninfluenced by the presence of nitric acid, but the acid increased the rate of degradation for Me2TODGA. The degradation products formed by irradiation are also initially produced in greater amounts in acid-contacted solution, but products may also be degraded by continued radiolysis. The identified radiolysis products suggest that the weakest bonds are those in the diglycolamide center of these molecules.

14.
Inorg Chem ; 53(20): 11231-41, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25275952

RESUMEN

A new alkaline thorium arsenate family was obtained and systematically investigated. The structures of A2Th(AsO4)2 (A = Li, Na, K, Rb, Cs) were determined from single crystal X-ray diffraction data. Li2Th(AsO4)2 and either isostructural K2Th(AsO4)2 and Rb2Th(AsO4)2 crystallize in the monoclinic crystal system. Na2Th(AsO4)2 and Cs2Th(AsO4)2 crystallize in the orthorhombic and tetragonal crystal systems, respectively. Li2Th(AsO4)2 consists of [Th(AsO4)2](2-) layers with Li atoms in the interlayer space. The rest of the compounds are based on 3D frameworks. Differences in local environments of ThO8 coordination polyhedra are described in relation to the symmetry. Despite different local environments of ThO8 coordination polyhedra and different structural symmetry, underlying nets of A2Th(AsO4)2 (A = Na, K, Rb, Cs) were shown to be the same. Single-crystal and powder Raman spectra were measured, and bands are assigned. DSC measurements showed phase transitions in K2Th(AsO4)2 and Rb2Th(AsO4)2, which were studied using high-temperature powder X-ray diffraction (HT-PXRD). The data of HT-PXRD demonstrates two high-temperature polymorphic modification of K2Th(AsO4)2 and only one for the isotypic Rb2Th(AsO4)2. The phase transitions in both K and Rb phases are reversible.

15.
Inorg Chem ; 53(6): 3088-98, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24601566

RESUMEN

Four new rubidium thorium molybdates have been synthesized by high-temperature solid-state reactions. The crystal structures of Rb8Th(MoO4)6, Rb2Th(MoO4)3, Rb4Th(MoO4)4, and Rb4Th5(MoO4)12 were determined using single-crystal X-ray diffraction. All these compounds construct from MoO4 tetrahedra and ThO8 square antiprisms. The studied compounds adopt the whole range of possible structure dimensionalities from zero-dimensional (0D) to three-dimensional (3D): finite clusters, chains, sheets, and frameworks. Rb8Th(MoO4)6 crystallizes in 0D containing clusters of [Th(MoO4)6](8-). The crystal structure of Rb2Th(MoO4)3 is based upon one-dimensional chains with configuration units of [Th(MoO4)3](2-). Two-dimensional sheets occur in compound Rb4Th(MoO4)4, and a 3D framework with channels formed by thorium and molybdate polyhedra has been observed in Rb4Th5(MoO4)12. The Raman and IR spectroscopic properties of these compounds are reported. Temperature-depended phase transition effects were observed in Rb2Th(MoO4)3 and Rb4Th(MoO4)4 using thermogravimetry-differential scanning calorimetry analysis and high-temperature powder diffraction methods.

16.
Inorg Chem ; 52(14): 7881-8, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23822513

RESUMEN

Three novel uranyl borophosphates, Ag2(NH4)3[(UO2)2{B3O(PO4)4(PO4H)2}]H2O (AgNBPU-1), Ag(2-x)(NH4)3[(UO2)2{B2P5O(20-x)(OH)x}] (x = 1.26) (AgNBPU-2), and Ag(2-x)(NH4)3[(UO2)2{B2P(5-y)AsyO(20-x)(OH)x}] (x = 1.43, y = 2.24) (AgNBPU-3), have been prepared by the H3BO3-NH4H2PO4/NH4H2AsO4 flux method. The structure of AgNBPU-1 has an unprecedented fundamental building block (FBB), composed of three BO4 and six PO4 tetrahedra which can be written as 9□:[Φ] □<3□>□|□<3□>□|□<3□>□|. Two Ag atoms are linearly coordinated; the coordination of a third one is T-shaped. AgNBPU-2 and AgNBPU-3 are isostructural and possess a FBB of two BO4 and five TO4 (T = P, As) tetrahedra (7□:□<4□>□|□). AgNBPU-3 is a solid solution with some PO4 tetrahedra of the AgNBPU-2 end-member being substituted by AsO4. Only two out of the three independent P positions are partially occupied by As, resulting in site dependent isomorphism. The three compounds represent the first actinide borophosphates.

17.
Chem Commun (Camb) ; 48(78): 9732-4, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22914808

RESUMEN

Complexation of Pu(IV) with TMDGA, TEDGA, and TODGA diglycolamide ligands was followed by vis-NIR spectroscopy. A crystal structure determination reveals that TMDGA forms a 1 : 3 homoleptic Pu(IV) complex with the nitrate anions forced into the outer coordination sphere.


Asunto(s)
Elementos de Series Actinoides/química , Glicolatos/química , Compuestos Organometálicos/química , Plutonio/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular
18.
Org Biomol Chem ; 10(28): 5443-51, 2012 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-22707012

RESUMEN

Palladium-catalyzed cross-coupling of (di)chloropyrazines with phosphorus pronucleophiles in the presence of a base gave the phosphorylated pyrazines in 81-95% yields. Based on this methodology a series of appropriately functionalized pyrazines was prepared as potential extractants of trivalent cations from highly acidic nuclear waste. A few hydrophilic derivatives exhibited a very good selectivity for Am(3+) over Eu(3+) with separation factors up to 40 at pH 1 at 0.01 mol L(-1) ligand concentration.

19.
Dalton Trans ; 41(30): 9209-19, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22729349

RESUMEN

The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2' : 6',2''-terpyridine (CyMe(4)-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO(2)(2+)) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. (1)H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...