Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4455, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488113

RESUMEN

Bone transport is a surgery-driven procedure for the treatment of large bone defects. However, challenging complications include prolonged consolidation, docking site nonunion and pin tract infection. Here, we develop an osteoinductive and biodegradable intramedullary implant by a hybrid tissue engineering construct technique to enable sustained delivery of bone morphogenetic protein-2 as an adjunctive therapy. In a male rat bone transport model, the eluting bone morphogenetic protein-2 from the implants accelerates bone formation and remodeling, leading to early bony fusion as shown by imaging, mechanical testing, histological analysis, and microarray assays. Moreover, no pin tract infection but tight osseointegration are observed. In contrast, conventional treatments show higher proportion of docking site nonunion and pin tract infection. The findings of this study demonstrate that the novel intramedullary implant holds great promise for advancing bone transport techniques by promoting bone regeneration and reducing complications in the treatment of bone defects.


Asunto(s)
Implantes Absorbibles , Osteogénesis , Masculino , Animales , Ratas , Bioensayo , Regeneración Ósea , Oseointegración
2.
J Biomed Mater Res A ; 111(8): 1120-1134, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36606330

RESUMEN

Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of ß-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.


Asunto(s)
Células Madre Mesenquimatosas , Osteonecrosis , Animales , Conejos , Cabeza Femoral/patología , Cabeza Femoral/cirugía , Becaplermina , Interleucina-4/farmacología , Regeneración Ósea , Células Madre Mesenquimatosas/patología , Corticoesteroides/farmacología , Osteonecrosis/inducido químicamente , Osteonecrosis/terapia , Osteonecrosis/patología
3.
Biomaterials ; 293: 121969, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36566553

RESUMEN

Gelatin methacryloyl (GelMA)/alginate-based hydrogels have shown great promise in bioprinting, but their printability is limited at room temperature. In this paper, we present our development of a room temperature printable hydrogel bioink by introducing polyethylene glycol dimethacrylate (PEGDMA) and xanthan gum into the GelMA/alginate system. The inclusion of PEGDMA facilitates tuning of the hydrogel's mechanical property, while xanthan gum improves the viscosity of the hydrogel system and allows easy extrusion at room temperature. To fine-tune the mechanical and degradation properties, methacrylated xanthan gum was synthesized and chemically crosslinked to the system. We systematically characterized this hydrogel with attention to printability, strut size, mechanical property, degradation and cytocompatibility, and achieved a broad range of compression modulus (∼10-100 kPa) and degradation profile (100% degradation by 24 h-40% by 2 weeks). Moreover, xanthan gum demonstrated solubility in ionic solutions such as cell culture medium, which is essential for biocompatibility. Live/dead staining showed that cell viability in the printed hydrogels was over 90% for 7 days. Metabolic activity analysis demonstrated excellent cell proliferation and survival within 4 weeks of incubation. In summary, the newly developed hydrogel system has demonstrated distinct features including extrusion printability, widely tunable mechanical property and degradation, ionic solubility, and cytocompatibility. It offers great flexibility in bioprinting and tissue engineering.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Alginatos/química , Ingeniería de Tejidos , Hidrogeles/química , Gelatina/química , Impresión Tridimensional
4.
Bioact Mater ; 19: 167-178, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35510174

RESUMEN

Conventional synthetic vascular grafts are associated with significant failure rates due to their mismatched mechanical properties with the native vessel and poor regenerative potential. Though different tissue engineering approaches have been used to improve the biocompatibility of synthetic vascular grafts, it is still crucial to develop a new generation of synthetic grafts that can match the dynamics of native vessel and direct the host response to achieve robust vascular regeneration. The size of pores within implanted biomaterials has shown significant effects on macrophage polarization, which has been further confirmed as necessary for efficient vascular formation and remodeling. Here, we developed biodegradable, autoclavable synthetic vascular grafts from a new polyurethane elastomer and tailored the grafts' interconnected pore sizes to promote macrophage populations with a pro-regenerative phenotype and improve vascular regeneration and patency rate. The synthetic vascular grafts showed similar mechanical properties to native blood vessels, encouraged macrophage populations with varying M2 to M1 phenotypic expression, and maintained patency and vascular regeneration in a one-month rat carotid interposition model and in a four-month rat aortic interposition model. This innovative bioactive synthetic vascular graft holds promise to treat clinical vascular diseases.

5.
iScience ; 25(5): 104229, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494239

RESUMEN

This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.

6.
Tissue Eng Part A ; 28(17-18): 760-769, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35357948

RESUMEN

Critical-sized cranial bone defect remains a great clinical challenge. With advantages in regenerative medicine, injectable hydrogels incorporated with bioactive molecules show great potential in promoting cranial bone repair. Recently, we developed a dual delivery system by sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in microparticles (MPs), and an injectable alginate/collagen (alg/col)-based hydrogel. In this study, we aim to evaluate the effect of dual delivery of BMP2 and IGF1 in MPs through the injectable hydrogel in critical-sized cranial bone defect healing. The gelatin MPs loaded with BMP2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) MPs loaded with IGF1 were prepared, respectively. The encapsulation efficiency and release profile of growth factors in MPs were measured. A cranial defect model was applied to evaluate the efficacy of the dual delivery system in bone regeneration. Adult Sprague Dawley rats were subjected to osteotomy to make an ⌀8-mm cranial defect. The injectable hydrogel containing MPs loaded with BMP2 (2 µg), IGF1 (2 µg), or a combination of BMP2 (1 µg) and IGF1 (1 µg) were injected to the defect site. New bone formation was evaluated by microcomputed tomography, histological analysis, and immunohistochemistry after 4 or 8 weeks. Data showed that dual delivery of the low-dose BMP2 and IGF1 in MPs through alg/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation, whose effect was comparable to the single delivery of high-dose BMP2 in MPs. In conclusion, this study suggests that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical-sized bone defect, with advantage in reducing the dose of BMP2. Impact Statement Sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in two different microparticles promotes critical-sized bone defect healing. This dual delivery system reduces the dose of BMP2 by supplementing IGF1, which may diminish the potential side effects of BMP2.


Asunto(s)
Proteína Morfogenética Ósea 2 , Hidrogeles , Alginatos/farmacología , Animales , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea , Hidrogeles/química , Hidrogeles/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratas , Ratas Sprague-Dawley , Cráneo/patología , Microtomografía por Rayos X
7.
J Orthop Res ; 40(8): 1801-1809, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34676596

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a disease in which inadequate blood supply to the subchondral bone causes the death of cells in the bone marrow. Decalcified histology and assessment of the percentage of empty lacunae are used to quantify the severity of ONFH. However, the current clinical practice of manually counting cells is a tedious and inefficient process. We utilized the power of artificial intelligence by training an established deep convolutional neural network framework, Faster-RCNN, to automatically classify and quantify osteocytes (healthy and pyknotic) and empty lacunae in 135 histology images. The adjusted correlation coefficient between the trained cell classifier and the ground truth was R = 0.98. The methods detailed in this study significantly reduced the manual effort of cell counting in ONFH histological samples and can be translated to other fields of image quantification.


Asunto(s)
Aprendizaje Profundo , Necrosis de la Cabeza Femoral , Animales , Inteligencia Artificial , Modelos Animales de Enfermedad , Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/patología , Humanos
8.
Stem Cell Res Ther ; 12(1): 503, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526115

RESUMEN

BACKGROUND: Approximately one third of patients undergoing core decompression (CD) for early-stage osteonecrosis of the femoral head (ONFH) experience progression of the disease, and subsequently require total hip arthroplasty (THA). Thus, identifying adjunctive treatments to optimize bone regeneration during CD is an unmet clinical need. Platelet-derived growth factor (PDGF)-BB plays a central role in cell growth and differentiation. The aim of this study was to characterize mesenchymal stromal cells (MSCs) that were genetically modified to overexpress PDGF-BB (PDGF-BB-MSCs) in vitro and evaluate their therapeutic effect when injected into the bone tunnel at the time of CD in an in vivo rabbit model of steroid-associated ONFH. METHODS: In vitro studies: Rabbit MSCs were transduced with a lentivirus vector carrying the human PDGF-BB gene under the control of either the cytomegalovirus (CMV) or phosphoglycerate (PGK) promoter. The proliferative rate, PDGF-BB expression level, and osteogenic differentiation capacity of unmodified MSCs, CMV-PDGF-BB-MSCs, and PGK-PDGF-BB-MSCs were assessed. In vivo studies: Twenty-four male New Zealand white rabbits received an intramuscular (IM) injection of methylprednisolone 20 mg/kg. Four weeks later, the rabbits were divided into four groups: the CD group, the hydrogel [HG, (a collagen-alginate mixture)] group, the MSC group, and the PGK-PDGF-BB-MSC group. Eight weeks later, the rabbits were sacrificed, their femurs were harvested, and microCT, mechanical testing, and histological analyses were performed. RESULTS: In vitro studies: PGK-PDGF-BB-MSCs proliferated more rapidly than unmodified MSCs (P < 0.001) and CMV-PDGF-BB-MSCs (P < 0.05) at days 3 and 7. CMV-PDGF-BB-MSCs demonstrated greater PDGF-BB expression than PGK-PDGF-BB-MSCs (P < 0.01). However, PGK-PDGF-BB-MSCs exhibited greater alkaline phosphatase staining at 14 days (P < 0.01), and osteogenic differentiation at 28 days (P = 0.07) than CMV-PDGF-BB-MSCs. In vivo: The PGK-PDGF-BB-MSC group had a trend towards greater bone mineral density (BMD) than the CD group (P = 0.074). The PGK-PDGF-BB-MSC group demonstrated significantly lower numbers of empty lacunae (P < 0.001), greater osteoclast density (P < 0.01), and greater angiogenesis (P < 0.01) than the other treatment groups. CONCLUSION: The use of PGK-PDGF-BB-MSCs as an adjunctive treatment with CD may reduce progression of osteonecrosis and enhance bone regeneration and angiogenesis in the treatment of early-stage ONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , Osteonecrosis , Animales , Becaplermina , Descompresión , Cabeza Femoral , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/terapia , Humanos , Masculino , Osteogénesis , Conejos , Esteroides
9.
Biomaterials ; 275: 120972, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34186237

RESUMEN

Cell-based therapy for augmentation of core decompression (CD) using mesenchymal stromal cells (MSCs) is a promising treatment for early stage osteonecrosis of the femoral head (ONFH). Recently, the therapeutic potential for immunomodulation of osteogenesis using preconditioned (with pro-inflammatory cytokines) MSCs (pMSCs), or by the timely resolution of inflammation using MSCs that over-express anti-inflammatory cytokines has been described. Here, pMSCs exposed to tumor necrosis factor-alpha and lipopolysaccharide for 3 days accelerated osteogenic differentiation in vitro. Furthermore, injection of pMSCs encapsulated with injectable hydrogels into the bone tunnel facilitated angiogenesis and osteogenesis in the femoral head in vivo, using rabbit bone marrow-derived MSCs and a model of corticosteroid-associated ONFH in rabbits. In contrast, in vitro and in vivo studies demonstrated that genetically-modified MSCs that over-express IL4 (IL4-MSCs), established by using a lentiviral vector carrying the rabbit IL4 gene under the cytomegalovirus promoter, accelerated proliferation of MSCs and decreased the percentage of empty lacunae in the femoral head. Therefore, adjunctive cell-based therapy of CD using pMSCs and IL4-MSCs may hold promise to heal osteonecrotic lesions in the early stage ONFH. These interventions must be applied in a temporally sensitive fashion, without interfering with the mandatory acute inflammatory phase of bone healing.


Asunto(s)
Corticoesteroides/efectos adversos , Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , Animales , Médula Ósea , Cabeza Femoral , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/terapia , Interleucina-4 , Osteogénesis , Conejos
10.
J Orthop Translat ; 28: 90-99, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33816112

RESUMEN

Background/Objective: Core decompression (CD) with scaffold and cell-based therapies is a promising strategy for providing both mechanical support and regeneration of the osteonecrotic area for early stage osteonecrosis of the femoral head (ONFH). We designed a new 3D printed porous functionally-graded scaffold (FGS) with a central channel to facilitate delivery of transplanted cells in a hydrogel to the osteonecrotic area. However, the optimal porous structural design for the FGS for the engineering of bone in ONFH has not been elucidated. The aim of this study was to fabricate and evaluate two different porous structures (30% or 60% porosity) of the FGSs in corticosteroid-associated ONFH in rabbits. METHODS: Two different FGSs with 30% or 60% porosity containing a 1-mm central channel were 3D printed using polycaprolactone and ß-tricalcium phosphate. The FGS was 3-mm diameter and 32-mm length and was composed of three segments: 1-mm in length for the non-porous proximal segment, 22-mm in length for the porous (30% versus 60%) middle segment, and 9-mm in length for the 15% porous distal segment. Eighteen male New Zealand White rabbits were given a single dose of 20 â€‹mg/kg methylprednisolone acetate intramuscularly. Four weeks later, rabbits were divided into three groups: the CD group, the 30% porosity FGS group, and the 60% porosity FGS group. In the CD group, a 3-mm diameter drill hole was created into the left femoral head. In the FGS groups, a 30% or 60% porosity implant was inserted into the bone tunnel. Eight weeks postoperatively, femurs were harvested and microCT, mechanical, and histological analyses were performed. RESULTS: The actual porosity and pore size of the middle segments were 26.4% â€‹± â€‹2.3% and 699 â€‹± â€‹56 â€‹µm in the 30% porosity FGS, and 56.0% â€‹± â€‹4.5% and 999 â€‹± â€‹71 â€‹µm in the 60% porosity FGS, respectively using microCT analysis. Bone ingrowth ratio in the 30% porosity FGS group was 73.9% â€‹± â€‹15.8%, which was significantly higher than 39.5% â€‹± â€‹13.0% in the CD group on microCT (p â€‹< â€‹0.05). Bone ingrowth ratio in the 60% porosity FGS group (61.3% â€‹± â€‹30.1%) showed no significant differences compared to the other two groups. The stiffness at the bone tunnel site in the 30% porosity FGS group was 582.4 â€‹± â€‹192.3 â€‹N/mm3, which was significantly higher than 338.7 â€‹± â€‹164.6 â€‹N/mm3 in the 60% porosity FGS group during push-out testing (p â€‹< â€‹0.05). Hematoxylin and eosin staining exhibited thick and mature trabecular bone around the porous FGS in the 30% porosity FGS group, whereas thinner, more immature trabecular bone was seen around the porous FGS in the 60% porosity FGS group. CONCLUSION: These findings indicate that the 30% porosity FGS may enhance bone regeneration and have superior biomechanical properties in the bone tunnel after CD in ONFH, compared to the 60% porosity FGS. TRANSLATION POTENTIAL STATEMENT: The translational potential of this article: This FGS implant holds promise for improving outcomes of CD for early stage ONFH.

11.
Tissue Eng Part A ; 27(23-24): 1458-1469, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33858216

RESUMEN

In vivo bioreactors are a promising approach for engineering vascularized autologous bone grafts to repair large bone defects. In this pilot parametric study, we first developed a three-dimensional (3D) printed scaffold uniquely designed to accommodate inclusion of a vascular bundle and facilitate growth factor delivery for accelerated vascular invasion and ectopic bone formation. Second, we established a new sheep deep circumflex iliac artery (DCIA) model as an in vivo bioreactor for engineering a vascularized bone graft and evaluated the effect of implantation duration on ectopic bone formation. Third, after 8 weeks of implantation around the DCIA, we transplanted the prevascularized bone graft to a 5 cm segmental bone defect in the sheep tibia, using the custom 3D printed bone morphogenic protein 2 (BMP-2) loaded scaffold without prior in vivo bioreactor maturation as a control. Analysis by micro-computed tomography and histomorphometry found ectopic bone formation in BMP-2 loaded scaffolds implanted for 8 and 12 weeks in the iliac pouch, with greater bone formation occurring after 12 weeks. Grafts transplanted to the tibial defect supported bone growth, mainly on the periphery of the graft, but greater bone growth and less soft tissue invasion was observed in the avascular BMP-2 loaded scaffold implanted directly into the tibia without prior in vivo maturation. Histopathological evaluation noted considerably greater vascularity in the bone grafts that underwent in vivo maturation with an inserted vascular bundle compared with the avascular BMP-2 loaded graft. Our findings indicate that the use of an initial DCIA in vivo bioreactor maturation step is a promising approach to developing vascularized autologous bone grafts, although scaffolds with greater osteoinductivity should be further studied. Impact statement This translational pilot study aims at combining a tissue engineering scaffold strategy, in vivo prevascularization, and a modified transplantation technique to accelerate large segmental bone defect repair. First, we three-dimensional (3D) printed a 5 cm scaffold with a unique design to facilitate vascular bundle inclusion and osteoinductive growth factor delivery. Second, we established a new sheep deep circumflex iliac artery model as an in vivo bioreactor for prevascularizing the novel 3D printed osteoinductive scaffold. Subsequently, we transplanted the prevascularized bone graft to a clinically relevant 5 cm segmental bone defect in the sheep tibia for bone regeneration.


Asunto(s)
Tibia , Andamios del Tejido , Animales , Regeneración Ósea , Proyectos Piloto , Ovinos , Ingeniería de Tejidos/métodos , Microtomografía por Rayos X
12.
Sci Rep ; 11(1): 6704, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758338

RESUMEN

Autologous bone grafts are considered the gold standard grafting material for the treatment of nonunion, but in very large bone defects, traditional autograft alone is insufficient to induce repair. Recombinant human bone morphogenetic protein 2 (rhBMP-2) can stimulate bone regeneration and enhance the healing efficacy of bone grafts. The delivery of rhBMP-2 may even enable engineered synthetic scaffolds to be used in place of autologous bone grafts for the treatment of critical size defects, eliminating risks associated with autologous tissue harvest. We here demonstrate that an osteoinductive scaffold, fabricated by combining a 3D printed rigid polymer/ceramic composite scaffold with an rhBMP-2-eluting collagen sponge can treat extremely large-scale segmental defects in a pilot feasibility study using a new sheep metatarsus fracture model stabilized with an intramedullary nail. Bone regeneration after 24 weeks was evaluated by micro-computed tomography, mechanical testing, and histological characterization. Load-bearing cortical bridging was achieved in all animals, with increased bone volume observed in sheep that received osteoinductive scaffolds compared to sheep that received an rhBMP-2-eluting collagen sponge alone.


Asunto(s)
Regeneración Ósea , Trasplante Óseo , Curación de Fractura , Andamios del Tejido , Animales , Fenómenos Biomecánicos , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Fracturas Óseas/diagnóstico , Fracturas Óseas/terapia , Histocitoquímica/métodos , Humanos , Imagenología Tridimensional , Huesos Metatarsianos , Proteínas Recombinantes/farmacología , Ovinos , Factor de Crecimiento Transformador beta/farmacología , Investigación Biomédica Traslacional , Trasplante Autólogo , Microtomografía por Rayos X
13.
Materialia (Oxf) ; 152021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33367226

RESUMEN

Here we report development of in-situ stable injectable hydrogels for delivery of cells and growth factors based on two precursors, alginate, and collagen/calcium sulfate (CaSO4). The alg/col hydrogels were shear-thinning, injectable through commercially available needles and stable right after injection. Rheological measurements revealed that pre-crosslinked alg/col hydrogels fully crosslinked at 37°C and that the storage modulus of alg/col hydrogels increased with increasing the collagen content or the concentration of CaSO4. The viscoelastic characteristics and injectability of the alg/col hydrogels were not significantly impacted by the storage of precursor solutions for 28 days. An osteoinductive bone morphogenic protein-2 (BMP-2) loaded into alg/col hydrogels was released in 14 days. Human mesenchymal stem cells (hMSCs) encapsulated in alg/col hydrogels had over 90% viability over 7 days after injection. The DNA content of hMSC-laden alg/col hydrogels increased by 6-37 folds for 28 days, depending on the initial cell density. In addition, hMSCs encapsulated in alg/col hydrogels and incubated in osteogenic medium were osteogenically differentiated and formed a mineralized matrix. Finally, a BMP-2 loaded alg/col hydrogel was used to heal a critical size calvarial bone defect in rats after 8 weeks of injection. The alg/col hydrogel holds great promise in tissue engineering and bioprinting applications.

14.
Part Part Syst Charact ; 37(10)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33384477

RESUMEN

The purpose of this study was to develop a PLGA-PEG-COOH- and gelatin-based microparticles (MPs) dual delivery system for release of BMP-2 and IGF-1. We made and characterized the delivery system based on its morphology, loading capacity, Encapsulation efficiency and release kinetics. Second, we examined the effects of electron beam (EB) sterilization on BMP-2 and IGF-1 loaded MPs and their biological effects. Third, we evaluated the synergistic effect of a controlled dual release of BMP-2 and IGF-1 on osteogenesis of MSCs. Encapsulation efficiency of growth factors into gelatin and PLGA-PEG-COOH MPs are in the range of 64.78% to 76.11%. E-beam sterilized growth factor delivery systems were effective in significantly promoting osteogenesis of MSCs, although E-beam sterilization decreased the bioactivity of growth factors in MPs by approximately 22%. BMP-2 release behavior from gelatin MPs/PEG hydrogel shows a faster release (52.7%) than that of IGF-1 from the PLGA-PEG-COOH MPs/PEG hydrogel (27.3%). The results demonstrate that the gelatin and PLGA-PEG-COOH MPs based delivery system could realize temporal release of therapeutic biomolecules by incorporating different growth factors into distinct microparticles. EB sterilization was an accessible method for sterilizing growth factors loaded carriers, which could pave the way for implementing growth factor delivery in clinical applications.

16.
Biomacromolecules ; 20(8): 2973-2988, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31282651

RESUMEN

The objective of this work was to engineer self-assembled nanoparticles (NPs) for on-demand release of bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) in response to enzymes secreted by the migrating human mesenchymal stem cells (hMSCs) and human endothelial colony forming cells (ECFCs) to induce osteogenesis and vasculogenesis. Gene expression profiling experiments revealed that hMSCs and ECFCs, encapsulated in osteogenic/vasculogenic hydrogels, expressed considerable levels of plasminogen, urokinase plasminogen activator and its receptor uPAR, and tissue plasminogen activator. Therefore, the plasmin-cleavable lysine-phenylalanine-lysine-threonine (KFKT) was used to generate enzymatically cleavable NPs. The acetyl-terminated, self-assembling peptide glycine-(phenylalanine)3GFFF-ac and the plasmin-cleavable GGKFKTGG were reacted with the cysteine-terminated CGGK(Fmoc/MTT) peptide through the MTT and Fmoc termini, respectively. The difunctional peptide was conjugated to polyethylene glycol diacrylate (PEGDA) with molecular weights (MW) ranging from 0.5 to 7.5 kDa, and the chain ends of the PEG-peptide conjugate were terminated with succinimide groups. After self-assembly in aqueous solution, BMP2 was grafted to the self-assembled, plasmin-cleavable PEG-based (PxSPCP) NPs for on-demand release. The NPs' stability in aqueous solution and that of the grafted BMP2 were strongly dependent on PEG MW. P2SPCP NPs showed high particle size stability, BMP2 grafting efficiency, grafted protein stability, and high extent of osteogenic differentiation of hMSCs. The localized and on-demand release of BMP2 from PxSPCP NPs coencapsulated with hMSCs in the linear polyethylene glycol-co-lactide acrylate patterned hydrogel with microchannels encapsulating hMSCs + ECFCs and VEGF-conjugated nanogels resulted in the highest extent of osteogenic and vasculogenic differentiation of the encapsulated cells compared to directly added BMP2/VEGF. The on-demand release of BMP2 from PxSPCP NPs not only enhances osteogenesis and vasculogenesis but also potentially reduces many undesired side effects of BMP2 therapy in bone regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Endotelio Vascular/citología , Fibrinolisina/metabolismo , Células Madre Mesenquimatosas/citología , Nanopartículas/metabolismo , Osteogénesis , Proteína Morfogenética Ósea 2/química , Regeneración Ósea , Células Cultivadas , Endotelio Vascular/metabolismo , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Polietilenglicoles/química , Activador de Tejido Plasminógeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Regen Biomater ; 6(2): 89-98, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30967963

RESUMEN

The objective of this work was to fabricate a rigid, resorbable and osteoconductive scaffold by mimicking the hierarchical structure of the cortical bone. Aligned peptide-functionalize nanofiber microsheets were generated with calcium phosphate (CaP) content similar to that of the natural cortical bone. Next, the CaP-rich fibrous microsheets were wrapped around a microneedle to form a laminated microtube mimicking the structure of an osteon. Then, a set of the osteon-mimetic microtubes were assembled around a solid rod and the assembly was annealed to fuse the microtubes and form a shell. Next, an array of circular microholes were drilled on the outer surface of the shell to generate a cortical bone-like scaffold with an interconnected network of Haversian- and Volkmann-like microcanals. The CaP content, porosity and density of the bone-mimetic microsheets were 240 wt%, 8% and 1.9 g/ml, respectively, which were close to that of natural cortical bone. The interconnected network of microcanals in the fused microtubes increased permeability of a model protein in the scaffold. The cortical scaffold induced osteogenesis and vasculogenesis in the absence of bone morphogenetic proteins upon seeding with human mesenchymal stem cells and endothelial colony-forming cells. The localized and timed-release of morphogenetic factors significantly increased the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells in the cortical scaffold. The cortical bone-mimetic nature of the cellular construct provided balanced rigidity, resorption rate, osteoconductivity and nutrient diffusivity to support vascularization and osteogenesis.

18.
Tissue Eng Part B Rev ; 25(4): 294-311, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30938269

RESUMEN

IMPACT STATEMENT: Millions of people every year develop scars in response to skin injuries after surgery, trauma, or burns with significant undesired physical and psychological effects. This review provides an update on engineering strategies for scar-free wound healing and discusses the role of different cell types, growth factors, cytokines, and extracellular components in regenerative wound healing. The use of pro-regenerative matrices combined with engineered cells with less intrinsic potential for fibrogenesis is a promising strategy for achieving scar-free skin tissue regeneration.


Asunto(s)
Cicatriz/prevención & control , Regeneración , Medicina Regenerativa , Fenómenos Fisiológicos de la Piel , Piel/lesiones , Cicatrización de Heridas , Animales , Humanos , Piel/patología
19.
Tissue Eng Part A ; 25(3-4): 234-247, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30146939

RESUMEN

IMPACT STATEMENT: The higher regenerative capacity of fetal articular cartilage compared with the adult is rooted in differences in cell density and matrix composition. We hypothesized that the zonal organization of articular cartilage can be engineered by encapsulation of mesenchymal stem cells in a single superficial zone-like matrix followed by sequential addition of zone-specific growth factors within the matrix, similar to the process of fetal cartilage development. The results demonstrate that the zonal organization of articular cartilage can potentially be regenerated using an injectable, monolayer cell-laden hydrogel with sequential release of growth factors.


Asunto(s)
Cartílago Articular/química , Diferenciación Celular , Condrocitos/metabolismo , Condrogénesis , Matriz Extracelular/química , Células Madre Mesenquimatosas/metabolismo , Cartílago Articular/citología , Cartílago Articular/metabolismo , Condrocitos/citología , Humanos , Células Madre Mesenquimatosas/citología
20.
Tissue Eng Part A ; 25(3-4): 248-256, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30234441

RESUMEN

IMPACT STATEMENT: Providing customized geometries and improved control in physical and biological properties, 3D-printed polycaprolactone/beta-tricalcium phosphate (PCL/ß-TCP) composite constructs are of high interest for bone tissue engineering applications. A critical step toward the translation and clinical applications of these types of scaffolds is terminal sterilization, and E-beam irradiation might be the most relevant method because of PCL properties. Through in vitro experimental testing of both physical and biological properties, it is proven in this article that E-beam irradiation is relevant for sterilization of 3D-printed PCL/ß-TCP scaffolds for bone tissue engineering applications.


Asunto(s)
Huesos/química , Fosfatos de Calcio/química , Electrones , Poliésteres/química , Impresión Tridimensional , Esterilización/métodos , Andamios del Tejido/química , Animales , Línea Celular , Ratones , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...