Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Exp Cell Res ; 437(1): 113993, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38485079

RESUMEN

This article demonstrates that label-free single-cell video tracking is a useful approach for in vitro studies of Epithelial-Mesenchymal Transition (EMT). EMT is a highly heterogeneous process, involved in wound healing, embryogenesis and cancer. The process promotes metastasis, and increased understanding can aid development of novel therapeutic strategies. The role of EMT-associated biomarkers depends on biological context, making it challenging to compare and interpret data from different studies. We demonstrate single-cell video tracking for comprehensive phenotype analysis. In this study we performed single-cell video tracking on 72-h long recordings. We quantified several behaviours at a single-cell level during induced EMT in MDA-MB-468 cells. This revealed notable variations in migration speed, with different dose-response patterns and varying distributions of speed. By registering cell morphologies during the recording, we determined preferred paths of morphological transitions. We also found a clear association between migration speed and cell morphology. We found elevated rates of cell death, diminished proliferation, and an increase in mitotic failures followed by re-fusion of sister-cells. The method allows tracking of phenotypes in cell lineages, which can be particularly useful in epigenetic studies. Sister-cells were found to have significant similarities in their speeds and morphologies, illustrating the heritability of these traits.


Asunto(s)
Rastreo Celular , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Fenotipo , Biomarcadores , Movimiento Celular
2.
Methods Mol Biol ; 2688: 161-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37410292

RESUMEN

Molecular visualization of metabolites, lipids, and proteins by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is becoming an in-demand analytical approach to aid the histopathological analysis of breast cancer. Particularly, proteins seem to play a role in cancer progression, and specific proteins are currently used in the clinic for staging. Formalin-fixed paraffin-embedded (FFPE) tissues are ideal for correlating the molecular markers with clinical outcomes due to their long-term storage. So far, to obtain proteomic information by MSI from this kind of tissue, antigen retrieval and tryptic digestion steps are required. In this chapter, we present a protocol to spatially detect small proteins in tumor and necrotic regions of patient-derived breast cancer xenograft FFPE tissues without employing any on-tissue digestion. This protocol can be used for other kinds of FFPE tissue following specific optimization of the sample preparation phases.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteómica/métodos , Fijación del Tejido/métodos , Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adhesión en Parafina , Formaldehído/química
3.
J Cancer Res Clin Oncol ; 149(8): 5255-5263, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36401094

RESUMEN

PURPOSE: Prostate cancer (PC) is successfully treated with anti-androgens; however, a significant proportion of patients develop resistance against this therapy. Anti-androgen-resistant disease (castration-resistant prostate cancer; CRPC) is currently incurable. Cyclin-dependent kinase 7 (CDK7) is positioned to positively regulate both cell cycle and transcription, the two features critical for the rapid proliferation of the CRPC cells. Here, we assess if CDK7 is a viable target to halt the proliferation of CRPC cells. METHODS: We use recently developed clinically relevant compounds targeting CDK7 and multiple cell proliferation assays to probe the importance of this kinase for the proliferation of normal, androgen-dependent, and CRPC cells. PC patient data were used to evaluate expression of CDK7 at different disease-stages. Finally, comprehensive glycoproteome-profiling was performed to evaluate CDK7 inhibitor effects on androgen-dependent and CRPC cells. RESULTS: We show that CDK7 is overexpressed in PC patients with poor prognosis, and that CRPC cells are highly sensitive to compounds targeting CDK7. Inhibition of O-GlcNAc transferase sensitizes the CRPC, but not androgen-dependent PC cells, to CDK7 inhibitors. Glycoproteome-profiling revealed that CDK7 inhibition induces hyper-O-GlcNAcylation of the positive transcription elongation complex (pTEFB: CDK9 and CCNT1) in the CRPC cells. Accordingly, co-targeting of CDK7 and CDK9 synergistically blocks the proliferation of the CRPC cells but does not have anti-proliferative effects in the normal prostate cells. CONCLUSION: We show that CRPC cells, but not normal prostate cells, are addicted on the high activity of the key transcriptional kinases, CDK7 and CDK9.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Proliferación Celular , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/genética , Andrógenos/metabolismo , Antagonistas de Andrógenos , Regulación Neoplásica de la Expresión Génica
4.
NMR Biomed ; 36(4): e4882, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36451530

RESUMEN

Patient-derived cancer cells cultured in vitro are a cornerstone of cancer metabolism research. More recently, the introduction of organoids has provided the research community with a more versatile model system. Physiological structure and organization of the cell source tissue are maintained in organoids, representing a closer link to in vivo tumor models. High-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) is a commonly applied analytical approach for metabolic profiling of intact tissue, but its use has not been reported for organoids. The aim of the current work was to compare the performance of HR MAS MRS and extraction-based nuclear magnetic resonance (NMR) in metabolic profiling of wild-type and tumor progression organoids (TPOs) from human colon cancer, and further to investigate how the sequentially increased genetic alterations of the TPOs affect the metabolic profile. Sixteen metabolites were reliably identified and quantified both in spectra based on NMR of extracts and HR MAS MRS of intact organoids. The metabolite concentrations from the two approaches were highly correlated (r = 0.94), and both approaches were able to capture the systematic changes in metabolic features introduced by the genetic alterations characteristic of colorectal cancer progression (e.g., increased levels of lactate and decreased levels of myo-inositol and phosphocholine with an increasing number of mutations). The current work highlights that HR MAS MRS is a well-suited method for metabolic profiling of intact organoids, with the additional benefit that the nondestructive nature of HR MAS enables subsequent recovery of the organoids for further analyses based on nucleic acids or proteins.


Asunto(s)
Neoplasias Colorrectales , Metabolómica , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Metaboloma
5.
Talanta ; 235: 122812, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517669

RESUMEN

Hyperpolarized 13C isotope resolved spectroscopy boosts NMR signal intensity, which improves signal detection and allows metabolic fluxes to be analyzed. Such hyperpolarized flux data may offer new approaches to tissue classification and biomarker identification that could be translated in vivo. Here we used hyperpolarized stable isotope resolved analysis (SIRA) to measure metabolite specific 13C isotopic enrichments in the central carbon metabolism of mouse prostate. Prostate and tumor tissue samples were acquired from transgenic adenocarcinomas of the mouse prostate (TRAMP) mice. Before euthanasia, mice were injected with [U-13C]glucose intraperitoneally (i.p.). Polar metabolite extracts were prepared, and hyperpolarized 1D-13C NMR spectra were obtained from normal prostate (n = 19) and cancer tissue (n = 19) samples. Binary classification and feature analysis was performed to make a separation model and to investigate differences between samples originating from normal and cancerous prostate tissue, respectively. Hyperpolarized experiments were carried out according to a standardized protocol, which showed a high repeatability (CV = 15%) and an average linewidth in the 1D-13C NMR spectra of 2 ± 0.5 Hz. The resolution of the hyperpolarized 1D-13C spectra was high with little signal overlap in the carbonyl region and metabolite identification was easily accomplished. A discrimination with 95% success rate could be made between samples originating from TRAMP mice prostate and tumor tissue based on isotopomers from uniquely identified metabolites. Hyperpolarized 13C-SIRA allowed detailed metabolic information to be obtained from tissue specimens. The positional information of 13C isotopic enrichments lead to easily interpreted features responsible for high predictive classification of tissue types. This analytical approach has matured, and the robust experimental protocols currently available allow systematic tracking of metabolite flux ex vivo.


Asunto(s)
Neoplasias de la Próstata , Animales , Biomarcadores de Tumor , Isótopos de Carbono , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones
6.
Metabolites ; 11(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34564393

RESUMEN

The association between lipid metabolism and long-term outcomes is relevant for tumor diagnosis and therapy. Archival material such as formalin-fixed and paraffin embedded (FFPE) tissues is a highly valuable resource for this aim as it is linked to long-term clinical follow-up. Therefore, there is a need to develop robust methodologies able to detect lipids in FFPE material and correlate them with clinical outcomes. In this work, lipidic alterations were investigated in patient-derived xenograft of breast cancer by using a matrix-assisted laser desorption ionization mass spectrometry (MALDI MSI) based workflow that included antigen retrieval as a sample preparation step. We evaluated technical reproducibility, spatial metabolic differentiation within tissue compartments, and treatment response induced by a glutaminase inhibitor (CB-839). This protocol shows a good inter-day robustness (CV = 26 ± 12%). Several lipids could reliably distinguish necrotic and tumor regions across the technical replicates. Moreover, this protocol identified distinct alterations in the tissue lipidome of xenograft treated with glutaminase inhibitors. In conclusion, lipidic alterations in FFPE tissue of breast cancer xenograft observed in this study are a step-forward to a robust and reproducible MALDI-MSI based workflow for pre-clinical and clinical applications.

7.
NPJ Syst Biol Appl ; 7(1): 36, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535676

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492 EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and can be utilized as a tool for the functional interpretation of high throughput clinical data.


Asunto(s)
Neoplasias de la Mama , Proteómica , Argininosuccinatoliasa/genética , Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Genoma , Humanos
8.
Mol Cancer Res ; 19(9): 1546-1558, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34088869

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2-mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. IMPLICATIONS: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis, which sensitizes the cells to mTOR inhibitors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Glutamina/metabolismo , Inhibidores mTOR/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Metaboloma , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular , Proliferación Celular , Femenino , Glucólisis , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Vía de Pentosa Fosfato , Células Tumorales Cultivadas
9.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924869

RESUMEN

We have investigated the biodistribution and tumor macrophage infiltration after intravenous injection of the poly(alkyl cyanoacrylate) nanoparticles (NPs): PEBCA (poly(2-ethyl-butyl cyanoacrylate), PBCA (poly(n-butyl cyanoacrylate), and POCA (poly(octyl cyanoacrylate), in mice. These NPs are structurally similar, have similar PEGylation, and have previously been shown to give large variations in cellular responses in vitro. The PEBCA NPs had the highest uptake both in the patient-derived breast cancer xenograft MAS98.12 and in lymph nodes, and therefore, they are the most promising of these NPs for delivery of cancer drugs. High-resolution magic angle spinning magnetic resonance (HR MAS MR) spectroscopy did not reveal any differences in the metabolic profiles of tumors following injection of the NPs, but the PEBCA NPs resulted in higher tumor infiltration of the anti-tumorigenic M1 macrophages than obtained with the two other NPs. The PEBCA NPs also increased the ratio of M1/M2 (anti-tumorigenic/pro-tumorigenic) macrophages in the tumors, suggesting that these NPs might be used both as a vehicle for drug delivery and to modulate the immune response in favor of enhanced therapeutic effects.

10.
Mol Oncol ; 15(8): 2026-2045, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33759347

RESUMEN

Cellular phenotype plasticity between the epithelial and mesenchymal states has been linked to metastasis and heterogeneous responses to cancer therapy, and remains a challenge for the treatment of triple-negative breast cancer (TNBC). Here, we used isogenic human breast epithelial cell lines, D492 and D492M, representing the epithelial and mesenchymal phenotypes, respectively. We employed a CRISPR-Cas9 loss-of-function screen targeting a 2240-gene 'druggable genome' to identify phenotype-specific vulnerabilities. Cells with the epithelial phenotype were more vulnerable to the loss of genes related to EGFR-RAS-MAPK signaling, while the mesenchymal-like cells had increased sensitivity to knockout of G2 -M cell cycle regulators. Furthermore, we discovered knockouts that sensitize to the mTOR inhibitor everolimus and the chemotherapeutic drug fluorouracil in a phenotype-specific manner. Specifically, loss of EGFR and fatty acid synthase (FASN) increased the effectiveness of the drugs in the epithelial and mesenchymal phenotypes, respectively. These phenotype-associated genetic vulnerabilities were confirmed using targeted inhibitors of EGFR (gefitinib), G2 -M transition (STLC), and FASN (Fasnall). In conclusion, a CRISPR-Cas9 loss-of-function screen enables the identification of phenotype-specific genetic vulnerabilities that can pinpoint actionable targets and promising therapeutic combinations.


Asunto(s)
Sistemas CRISPR-Cas , Mutación con Pérdida de Función , Fenotipo , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/uso terapéutico , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Transición Epitelial-Mesenquimal , Everolimus/uso terapéutico , Femenino , Fluorouracilo/uso terapéutico , Humanos , Transducción de Señal/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
11.
FASEB J ; 35(3): e21344, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33566385

RESUMEN

Cancer cells often depend on microenvironment signals from molecules such as cytokines for proliferation and metabolic adaptations. PRL-3, a cytokine-induced oncogenic phosphatase, is highly expressed in multiple myeloma cells and associated with poor outcome in this cancer. We studied whether PRL-3 influences metabolism. Cells transduced to express PRL-3 had higher aerobic glycolytic rate, oxidative phosphorylation, and ATP production than the control cells. PRL-3 promoted glucose uptake and lactate excretion, enhanced the levels of proteins regulating glycolysis and enzymes in the serine/glycine synthesis pathway, a side branch of glycolysis. Moreover, mRNAs for these proteins correlated with PRL-3 expression in primary patient myeloma cells. Glycine decarboxylase (GLDC) was the most significantly induced metabolism gene. Forced GLDC downregulation partly counteracted PRL-3-induced aerobic glycolysis, indicating GLDC involvement in a PRL-3-driven Warburg effect. AMPK, HIF-1α, and c-Myc, important metabolic regulators in cancer cells, were not mediators of PRL-3's metabolic effects. A phosphatase-dead PRL-3 mutant, C104S, promoted many of the metabolic changes induced by wild-type PRL-3, arguing that important metabolic effects of PRL-3 are independent of its phosphatase activity. Through this study, PRL-3 emerges as one of the key mediators of metabolic adaptations in multiple myeloma.


Asunto(s)
Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Adenosina Trifosfato/biosíntesis , Línea Celular Tumoral , Proliferación Celular , Glicina/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/fisiología , Glucólisis , Humanos , Serina/metabolismo
12.
Sci Rep ; 10(1): 16992, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046784

RESUMEN

In this study, we probed the importance of O-GlcNAc transferase (OGT) activity for the survival of tamoxifen-sensitive (TamS) and tamoxifen-resistant (TamR) breast cancer cells. Tamoxifen is an antagonist of estrogen receptor (ERα), a transcription factor expressed in over 50% of breast cancers. ERα-positive breast cancers are successfully treated with tamoxifen; however, a significant number of patients develop tamoxifen-resistant disease. We show that in vitro development of tamoxifen-resistance is associated with increased sensitivity to the OGT small molecule inhibitor OSMI-1. Global transcriptome profiling revealed that TamS cells adapt to OSMI-1 treatment by increasing the expression of histone genes. This is known to mediate chromatin compaction. In contrast, TamR cells respond to OGT inhibition by activating the unfolded protein response and by significantly increasing ERRFI1 expression. ERRFI1 is an endogenous inhibitor of ERBB-signaling, which is a known driver of tamoxifen-resistance. We show that ERRFI1 is selectively downregulated in ERα-positive breast cancers and breast cancers driven by ERBB2. This likely occurs via promoter methylation. Finally, we show that increased ERRFI1 expression is associated with extended survival in patients with ERα-positive tumors (p = 9.2e-8). In summary, we show that tamoxifen-resistance is associated with sensitivity to OSMI-1, and propose that this is explained in part through an epigenetic activation of the tumor-suppressor ERRFI1 in response to OSMI-1 treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , N-Acetilglucosaminiltransferasas/metabolismo , Tamoxifeno/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/mortalidad , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , N-Acetilglucosaminiltransferasas/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Análisis de Supervivencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Respuesta de Proteína Desplegada
13.
Front Oncol ; 10: 582092, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425735

RESUMEN

OBJECTIVE: Simultaneous PET/MRI combines soft-tissue contrast of MRI with high molecular sensitivity of PET in one session. The aim of this prospective study was to evaluate detection rates of recurrent prostate cancer by 18F-fluciclovine PET/MRI. METHODS: Patients with biochemical recurrence (BCR) or persistently detectable prostate specific antigen (PSA), were examined with simultaneous 18F-fluciclovine PET/MRI. Multiparametric MRI (mpMRI) and PET/MRI were scored on a 3-point scale (1-negative, 2-equivocal, 3-recurrence/metastasis) and detection rates (number of patients with suspicious findings divided by total number of patients) were reported. Detection rates were further stratified based on PSA level, PSA doubling time (PSAdt), primary treatment and inclusion criteria (PSA persistence, European Association of Urology (EAU) Low-Risk BCR and EAU High-Risk BCR). A detailed investigation of lesions with discrepancy between mpMRI and PET/MRI scores was performed to evaluate the incremental value of PET/MRI to mpMRI. The impact of the added PET acquisition on further follow-up and treatment was evaluated retrospectively. RESULTS: Among patients eligible for analysis (n=84), 54 lesions were detected in 38 patients by either mpMRI or PET/MRI. Detection rates were 41.7% for mpMRI and 39.3% for PET/MRI (score 2 and 3 considered positive). There were no significant differences in detection rates for mpMRI versus PET/MRI. Disease detection rates were higher in patients with PSA≥1ng/mL than in patients with lower PSA levels but did not differ between patients with PSAdt above versus below 6 months. Detection rates in patients with primary radiation therapy were higher than in patients with primary surgery. Patients categorized as EAU Low-Risk BCR had a detection rate of 0% both for mpMRI and PET/MRI. For 15 lesions (27.8% of all lesions) there was a discrepancy between mpMRI score and PET/MRI score. Of these, 10 lesions scored as 2-equivocal by mpMRI were changed to a more definite score (n=4 score 1 and n=6 score 3) based on the added PET acquisition. Furthermore, for 4 of 10 patients with discrepancy between mpMRI and PET/MRI scores, the added PET acquisition had affected the treatment choice. CONCLUSION: Combined 18F-fluciclovine PET/MRI can detect lesions suspicious for recurrent prostate cancer in patients with a range of PSA levels. Combined PET/MRI may be useful to select patients for appropriate treatment, but is of limited use at low PSA values or in patients classified as EAU Low-Risk BCR, and the clinical value of 18F-fluciclovine PET/MRI in this study was too low to justify routine clinical use.

14.
J Cachexia Sarcopenia Muscle ; 11(1): 195-207, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31436048

RESUMEN

BACKGROUND: The majority of patients with advanced cancer develop cachexia, a weight loss syndrome that severely reduces quality of life and limits survival. Our understanding of the underlying mechanisms that cause the condition is limited, and there are currently no treatment options that can completely reverse cachexia. Several tumour-derived factors and inflammatory mediators have been suggested to contribute to weight loss in cachectic patients. However, inconsistencies between studies are recurrent. Activin A and interleukin 6 (IL-6) are among the best studied factors that seem to be important, and several studies support their individual role in cachexia development. METHODS: We investigated the interplay between activin A and IL-6 in the cachexia-inducing TOV21G cell line, both in culture and in tumours in mice. We previously found that the human TOV21G cells secrete IL-6 that induces autophagy in reporter cells and cachexia in mice. Using this established cachexia cell model, we targeted autocrine activin A by genetic, chemical, and biological approaches. The secretion of IL-6 from the cancer cells was determined in both culture and tumour-bearing mice by a species-specific ELISA. Autophagy reporter cells were used to monitor the culture medium for autophagy-inducing activities, and muscle mass changes were evaluated in tumour-bearing mice. RESULTS: We show that activin A acts in an autocrine manner to promote the synthesis and secretion of IL-6 from cancer cells. By inhibiting activin A signalling, the production of IL-6 from the cancer cells is reduced by 40-50% (up to 42% reduction on protein level, P = 0.0048, and 48% reduction on mRNA level, P = 0.0308). Significantly reduced IL-6 secretion (P < 0.05) from the cancer cells is consistently observed when using biological, chemical, and genetic approaches to interfere with the autocrine activin A loop. Inhibiting activin signalling also reduces the ability of the cancer cells to accelerate autophagy in non-cancerous cells (up to 43% reduced autophagy flux, P = 0.0006). Coherent to the in vitro data, the use of an anti-activin receptor 2 antibody in cachectic tumour-bearing mice reduces serum levels of cancer cell-derived IL-6 by 62% (from 417 to 159 pg/mL, P = 0.03), and, importantly, it reverses cachexia and counteracts loss of all measured muscle groups (P < 0.0005). CONCLUSIONS: Our data support a functional link between activin A and IL-6 signalling pathways and indicate that interference with activin A-induced IL-6 secretion from the tumour has therapeutic potential for cancer-induced cachexia.


Asunto(s)
Activinas/metabolismo , Comunicación Autocrina/fisiología , Autofagia/genética , Caquexia/genética , Interleucina-6/metabolismo , Neoplasias Ováricas/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Neoplasias Ováricas/patología , Transducción de Señal
16.
Tomography ; 5(3): 308-319, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31572792

RESUMEN

Effective transverse relaxivity of gadolinium-based contrast agents is often neglected in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we assess time and tissue dependence of R2* enhancement and its impact on pharmacokinetic parameter quantification and treatment monitoring. Multiecho DCE-MRI was performed at 7 T on mice bearing subcutaneous TOV-21G human ovarian cancer xenografts (n = 8) and on the transgenic adenocarcinoma of the mouse prostate (TRAMP) model (n = 7). Subsequently, the TOV-21G tumor-bearing mice were treated with bevacizumab and rescanned 2 days later. Pharmacokinetic analysis (extended Tofts model) was performed using either the first echo signal only (standard single-echo DCE-MRI) or the estimated signal at TE = 0 derived from exponential fitting of R2* relaxation (R2*-corrected). Neglecting R2* enhancement causes underestimation of Gd-DOTA concentration (peak enhancement underestimated by 9.4%-16% in TOV-21G tumors and 13%-20% in TRAMP prostates). Median Ktrans and ve were underestimated in every mouse (TOV-21G Ktrans: 11%-19%, TOV-21G ve: 5.3%-8.9%; TRAMP Ktrans: 8.6%-19%, TRAMP ve: 12%-21%). Bevacizumab treatment reduced Ktrans in all TOV-21G tumors after 48 hours. Treatment effect was significantly greater in all tumors after R2* correction (median change of -0.050 min-1 in R2*-corrected Ktrans vs. -0.037 min-1 in uncorrected Ktrans). R2* enhancement in DCE-MRI is both time- and tissue-dependent and may not be negligible at 7 T in tissue with high Ktrans. This has consequences for the use of Ktrans and other DCE-MRI parameters as biomarkers, because treatment effect size can be underestimated when R2* enhancement is neglected.


Asunto(s)
Bevacizumab/administración & dosificación , Bevacizumab/farmacocinética , Gadolinio DTPA , Imagen por Resonancia Magnética/métodos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Análisis de Varianza , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Intensificación de Imagen Radiográfica/métodos , Sensibilidad y Especificidad
17.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569627

RESUMEN

Metastatic disease is the leading cause of death in breast cancer patients. Disrupting the cancer cell's ability to migrate may be a strategy for hindering metastasis. Cytosolic phospholipase A2 α (cPLA2α), along with downstream proinflammatory and promigratory metabolites, has been implicated in several aspects of tumorigenesis, as well as metastasis, in various types of cancer. In this study, we aim to characterize the response to reduced cPLA2α activity in metastatic versus non-metastatic cells. We employ an isogenic murine cell line pair displaying metastatic (4T1) and non-metastatic (67NR) phenotype to investigate the role of cPLA2α on migration. Furthermore, we elucidate the effect of reduced cPLA2α activity on global gene expression in the metastatic cell line. Enzyme inhibition is achieved by using a competitive pharmacological inhibitor, cPLA2α inhibitor X (CIX). Our data show that 4T1 expresses significantly higher cPLA2α levels as compared to 67NR, and the two cell lines show different sensitivity to the CIX treatment with regards to metabolism and proliferation. Inhibition of cPLA2α at nontoxic concentrations attenuates migration of highly metastatic 4T1 cells, but not non-metastatic 67NR cells. Gene expression analysis indicates that processes such as interferon type I (IFN-I) signaling and cell cycle regulation are key processes regulated by cPLA2a in metastatic 4T1 cells, supporting the findings from the biological assays. This study demonstrates that two isogenic cancer cell lines with different metastatic potential respond differently to reduced cPLA2α activity. In conclusion, we argue that cPLA2α is a potential therapeutic target in cancer and that enzyme inhibition may inhibit metastasis through an anti-migratory mechanism, possibly involving Toll-like receptor signaling and type I interferons.


Asunto(s)
Fosfolipasas A2 Grupo IV/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Dinoprostona/biosíntesis , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Fosfolipasas A2 Grupo IV/genética , Humanos , Interferón Tipo I/metabolismo , Modelos Biológicos , Inhibidores de Fosfolipasa A2/farmacología , Transducción de Señal/efectos de los fármacos , Transcriptoma
18.
Methods Mol Biol ; 2037: 243-262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31463850

RESUMEN

NMR-based metabolomics has shown promise in the diagnosis of diseases as it enables identification and quantification of metabolic biomarkers. Using high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy, metabolic profiles from intact tissue specimens can be obtained with high spectral resolution. In addition, HR-MAS NMR requires minimal sample preparation and the sample is kept intact for subsequent analyses. In this chapter, we describe a typical protocol for NMR-based metabolomics of tissue samples. We cover all major steps ranging from tissue sample collection to determination of biomarkers, including experimental precautions taken to ensure reproducible and reliable reporting of data in the area of clinical application.


Asunto(s)
Biomarcadores/análisis , Investigación Biomédica , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Manejo de Especímenes/métodos , Humanos
19.
Breast Cancer Res ; 21(1): 61, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088535

RESUMEN

INTRODUCTION: Glutaminase inhibitors target cancer cells by blocking the conversion of glutamine to glutamate, thereby potentially interfering with anaplerosis and synthesis of amino acids and glutathione. The drug CB-839 has shown promising effects in preclinical experiments and is currently undergoing clinical trials in several human malignancies, including triple-negative breast cancer (TNBC). However, response to glutaminase inhibitors is variable and there is a need for identification of predictive response biomarkers. The aim of this study was to determine how glutamine is utilized in two patient-derived xenograft (PDX) models of breast cancer representing luminal-like/ER+ (MAS98.06) and basal-like/triple-negative (MAS98.12) breast cancer and to explore the metabolic effects of CB-839 treatment. EXPERIMENTAL: MAS98.06 and MAS98.12 PDX mice received CB-839 (200 mg/kg) or drug vehicle two times daily p.o. for up to 28 days (n = 5 per group), and the effect on tumor growth was evaluated. Expression of 60 genes and seven glutaminolysis key enzymes were determined using gene expression microarray analysis and immunohistochemistry (IHC), respectively, in untreated tumors. Uptake and conversion of glutamine were determined in the PDX models using HR MAS MRS after i.v. infusion of [5-13C] glutamine when the models had received CB-839 (200 mg/kg) or vehicle for 2 days (n = 5 per group). RESULTS: Tumor growth measurements showed that CB-839 significantly inhibited tumor growth in MAS98.06 tumors, but not in MAS98.12 tumors. Gene expression and IHC analysis indicated a higher proline synthesis from glutamine in untreated MAS98.06 tumors. This was confirmed by HR MAS MRS of untreated tumors demonstrating that MAS98.06 used glutamine to produce proline, glutamate, and alanine, and MAS98.12 to produce glutamate and lactate. In both models, treatment with CB-839 resulted in accumulation of glutamine. In addition, CB-839 caused depletion of alanine, proline, and glutamate ([1-13C] glutamate) in the MAS98.06 model. CONCLUSION: Our findings indicate that TNBCs may not be universally sensitive to glutaminase inhibitors. The major difference in the metabolic fate of glutamine between responding MAS98.06 xenografts and non-responding MAS98.12 xenografts is the utilization of glutamine for production of proline. We therefore suggest that addiction to proline synthesis from glutamine is associated with response to CB-839 in breast cancer. The effect of glutaminase inhibition in two breast cancer patient-derived xenograft (PDX) models. 13C HR MAS MRS analysis of tumor tissue from CB-839-treated and untreated models receiving 13C-labeled glutamine ([5-13C] Gln) shows that the glutaminase inhibitor CB-839 is causing an accumulation of glutamine (arrow up) in two PDX models representing luminal-like breast cancer (MAS98.06) and basal-like breast cancer (MAS98.12). In MAS98.06 tumors, CB-839 is in addition causing depletion of proline ([5-13C] Pro), alanine ([1-13C] Ala), and glutamate ([1-13C] Glu), which could explain why CB-839 causes tumor growth inhibition in MAS98.06 tumors, but not in MAS98.12 tumors.


Asunto(s)
Neoplasias de la Mama/metabolismo , Glutaminasa/metabolismo , Glutamina/metabolismo , Prolina/metabolismo , Animales , Biomarcadores , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Biología Computacional , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Perfilación de la Expresión Génica , Glutaminasa/antagonistas & inhibidores , Humanos , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Metabolómica/métodos , Ratones , Modelos Biológicos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Sci Rep ; 9(1): 6122, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992473

RESUMEN

Cytosolic phospholipase A2α (cPLA2α) has been shown to be elevated in breast cancer and is a potential biomarker in the differentiation of molecular sub-types. Using a cPLA2α activatable fluorophore, DDAO arachidonate, we explore its ability to function as a contrast agent in fluorescence-guided surgery. In cell lines ranging in cPLA2α expression and representing varying breast cancer sub-types, we show DDAO arachidonate activates with a high correlation to cPLA2α expression level. Using a control probe, DDAO palmitate, in addition to cPLA2α inhibition and genetic knockdown, we show that this activation is a result of cPLA2α activity. In mouse models, using an ex vivo tumor painting technique, we show that DDAO arachidonate activates to a high degree in basal-like versus luminal-like breast tumors and healthy mammary tissue. Finally, we show that using an in vivo model, orthotopic basal-like tumors give significantly high probe activation compared to healthy mammary fat pads and surrounding tissue. Together we conclude that cPLA2α activatable fluorophores such as DDAO arachidonate may serve as a useful contrast agent for the visualization of tumor margins in the fluorescence-guided surgery of basal-like breast cancer.


Asunto(s)
Acridinas/administración & dosificación , Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Fosfolipasas A2 Grupo IV/metabolismo , Imagen Óptica/métodos , Acridinas/química , Acridinas/metabolismo , Administración Tópica , Animales , Ácido Araquidónico/química , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Medios de Contraste/química , Medios de Contraste/metabolismo , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Inyecciones Intraperitoneales , Células MCF-7 , Glándulas Mamarias Animales/patología , Mastectomía/métodos , Ratones , Cirugía Asistida por Video/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...