Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2304340, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324463

RESUMEN

Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) limits the penetration and efficacy of therapies. It has been previously shown that photodynamic priming (PDP) using EGFR targeted photoactivable multi-inhibitor liposomes remediates desmoplasia in PDAC and doubles overall survival. Here, bifunctional PD-L1 immune checkpoint targeted photoactivable liposomes (iTPALs) that mediate both PDP and PD-L1 blockade are presented. iTPALs also improve phototoxicity in PDAC cells and induce immunogenic cell death. PDP using iTPALs reduces collagen density, thereby promoting self-delivery by 5.4-fold in collagen hydrogels, and by 2.4-fold in syngeneic CT1BA5 murine PDAC tumors. PDP also reduces tumor fibroblast content by 39.4%. Importantly, iTPALs also block the PD-1/PD-L1 immune checkpoint more efficiently than free α-PD-L1 antibodies. Only a single sub-curative priming dose using iTPALs provides 54.1% tumor growth inhibition and prolongs overall survival in mice by 42.9%. Overall survival directly correlates with the extent of tumor iTPAL self-delivery following PDP (Pearson's r = 0.670, p = 0.034), while no relationship is found for sham non-specific IgG constructs activated with light. When applied over multiple cycles, as is typical for immune checkpoint therapy, PDP using iTPALs promises to offer durable tumor growth delay and significant survival benefit in PDAC patients, especially when used to promote self-delivery of integrated chemo-immunotherapy regimens.

2.
Photochem Photobiol ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818742

RESUMEN

Photodynamic priming (PDP) leverages the photobiological effects of subtherapeutic photodynamic therapy (PDT) regimens to modulate the tumor vasculature and stroma. PDP also sensitizes tumors to secondary therapies, such as immunotherapy by inducing a cascade of molecular events, including immunogenic cell death (ICD). We and others have shown that PDP improves the delivery of antibodies, among other theranostic agents. However, it is not known whether a single PDP protocol is capable of both inducing ICD in vivo and augmenting the delivery of immune checkpoint inhibitors. In this rapid communication, we show for the first time that a single PDP protocol using liposomal benzoporphyrin derivative (Lipo-BPD, 0.25 mg/kg) with 690 nm light (75 J/cm2 , 100 mW/cm2 ) simultaneously doubles the delivery of ⍺-PD-L1 antibodies in murine AT-84 head and neck tumors and induces ICD in vivo. ICD was observed as a 3-11 fold increase in tumor cell exposure of damage-associated molecular patterns (Calreticulin, HMGB1, and HSP70). These findings suggest that this single, highly translatable PDP protocol using clinically relevant Lipo-BPD holds potential for improving immunotherapy outcomes in head and neck cancer. It can do so by simultaneously overcoming physical barriers to the delivery of immune checkpoint inhibitors, and biochemical barriers that contribute to immunosuppression.

3.
Pharmaceutics ; 14(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36365244

RESUMEN

Osmium (Os)-based photosensitizers (PSs) exhibit unique broad, red-shifted absorption, favoring PDT activity at greater tissue depths. We recently reported on a potent Os(II) PS, rac-[Os(phen)2(IP-4T)](Cl)2 (ML18J03) with submicromolar hypoxia activity. ML18J03 exhibits a low luminescence quantum yield of 9.8 × 10-5 in PBS, which limits its capacity for in vivo luminescence imaging. We recently showed that formulating ML18J03 into 10.2 nm DSPE-mPEG2000 micelles (Mic-ML18J03) increases its luminescence quantum yield by two orders of magnitude. Here, we demonstrate that Mic-ML18J03 exhibits 47-fold improved accumulative luminescence signals in orthotopic AT-84 head and neck tumors. We show, for the first time, that micellar formulation provides up to 11.7-fold tumor selectivity for ML18J03. Furthermore, Mic-ML18J03 does not experience the concentration-dependent quenching observed with unformulated ML18J03 in PBS, and formulation reduces spectral shifting of the emission maxima during PDT (variance = 6.5 and 27.3, respectively). The Mic-ML18J03 formulation also increases the production of reactive molecular species 2-3-fold. These findings demonstrate that micellar formulation is a versatile and effective approach to enable in vivo luminescence imaging options for an otherwise quenched, yet promising, PS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...