Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(22): 32651-32669, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35220520

RESUMEN

The skyrocketing demand and progressive technology have increased our dependency on electrical and electronic devices. However, the life span of these devices has been shortened because of rapid scientific expansions. Hence, massive volumes of electronic waste (e-waste) is generating day by day. Nevertheless, the ongoing management of e-waste has emerged as a major threat to sustainable economic development worldwide. In general, e-waste contains several toxic substances such as metals, plastics, and refractory oxides. Metals, particularly lead, mercury, nickel, cadmium, and copper along with some valuable metals such as rare earth metals, platinum group elements, alkaline and radioactive metal are very common; which can be extracted before disposing of the e-waste for reuse. In addition, many of these metals are hazardous. Therefore, e-waste management is an essential issue. In this study, we critically have reviewed the existing extraction processes and compared among different processes such as physical, biological, supercritical fluid technologies, pyro and hydrometallurgical, and hybrid methods used for metals extraction from e-waste. The review indicates that although each method has particular merits but hybrid methods are eco-friendlier with extraction efficiency > 90%. This study also provides insight into the technical challenges to the practical realization of metals extraction from e-waste sources.


Asunto(s)
Residuos Electrónicos , Administración de Residuos , Residuos Electrónicos/análisis , Metales , Plásticos , Reciclaje/métodos , Administración de Residuos/métodos
2.
Eur Phys J Plus ; 137(1): 1, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34909366

RESUMEN

COVID-19 pandemic has recently had a dramatic impact on society. The understanding of the disease transmission is of high importance to limit its spread between humans. The spread of the virus in air strongly depends on the flow dynamics of the human airflows. It is, however, known that predicting the flow dynamics of the human airflows can be challenging due to different particles sizes and the turbulent aspect of the flow regime. It is thus recommended to present a deep analysis of different human airflows based on the existing experimental investigations. A validation of the existing numerical predictions of such flows would be of high interest to further develop the existing numerical model for different flow configurations. This paper presents a literature review of the experimental and numerical studies on human airflows, including sneezing, coughing and breathing. The dynamics of these airflows for different droplet sizes is discussed. The influence of other parameters, such as the viscosity and relative humidity, on the germs transmission is also presented. Finally, the efficacy of using a facemask in limiting the transmission of COVID-19 is investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA