Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 2976, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278268

RESUMEN

In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair.


Asunto(s)
Axones/fisiología , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Vaina de Mielina/fisiología , Animales , Axones/ultraestructura , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Modelos Animales , Vaina de Mielina/ultraestructura , Nervio Ciático/citología , Nervio Ciático/ultraestructura
2.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31168816

RESUMEN

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Humanos , Receptores Acoplados a Proteínas G/química
3.
eNeuro ; 5(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29766046

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior.


Asunto(s)
Ganglios Espinales/metabolismo , Hipoestesia/metabolismo , Canales Iónicos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Nocicepción/fisiología , Nociceptores/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/inervación , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Calor , Hipoestesia/patología , Hipoestesia/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Fibras Nerviosas Amielínicas/patología , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Células Receptoras Sensoriales/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia
4.
J Exp Med ; 215(3): 941-961, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29367382

RESUMEN

Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin-a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"-as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin.


Asunto(s)
Vaina de Mielina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Citoesqueleto/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Mutación/genética , Vaina de Mielina/ultraestructura , Plectina/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
J Neurosci ; 37(36): 8688-8705, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28821669

RESUMEN

Localized translation in neurites helps regulate synaptic strength and development. Dysregulation of local translation is associated with many neurological disorders. However, due to technical limitations, study of this phenomenon has largely been limited to brain regions with laminar organization of dendrites such as the hippocampus or cerebellum. It has not been examined in the cortex, a region of importance for most neurological disorders, where dendrites of each neuronal population are densely intermingled with cell bodies of others. Therefore, we have developed a novel method, SynapTRAP, which combines synaptoneurosomal fractionation with translating ribosome affinity purification to identify ribosome-bound mRNA in processes of genetically defined cell types. We demonstrate SynapTRAP's efficacy and report local translation in the cortex of mice, where we identify a subset of mRNAs that are translated in dendrites by neuronal ribosomes. These mRNAs have disproportionately longer lengths, enrichment for FMRP binding and G-quartets, and their genes are under greater evolutionary constraint in humans. In addition, we show that alternative splicing likely regulates this phenomenon. Overall, SynapTRAP allows for rapid isolation of cell-type-specific localized translation and is applicable to classes of previously inaccessible neuronal and non-neuronal cells in vivoSIGNIFICANCE STATEMENT Instructions for making proteins are found in the genome, housed within the nucleus of each cell. These are then copied as RNA and exported to manufacture new proteins. However, in the brain, memory is thought to be encoded by strengthening individual connections (synapses) between neurons far from the nucleus. Thus, to efficiently make new proteins specifically where they are needed, neurons can transport RNAs to sites near synapses to locally produce proteins. Importantly, several mutations that cause autism disrupt this process. It has been assumed this process occurs in all brain regions, but has never been measured in the cortex. We applied a newly developed method measure to study, for the first time, local translation in cortical neurons.


Asunto(s)
Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Neuritas/metabolismo , Ribosomas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/fisiología , Animales , Masculino , Ratones , Ratones Transgénicos
6.
PLoS Biol ; 15(6): e2001408, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28636612

RESUMEN

Myelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2ß1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear. Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We provide evidence that excessive PKA activation amplifies promyelinating signals downstream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key transcription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neuropathies associated with decreased laminin function are characterized by focally thick and redundant myelin.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Laminina/metabolismo , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Western Blotting , Células Cultivadas , Laminina/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Modelos Neurológicos , Neurregulina-1/genética , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nervio Ciático/citología , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura
8.
J Neurosci ; 36(49): 12351-12367, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927955

RESUMEN

Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT: Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Receptores Acoplados a Proteínas G/genética , Células de Schwann/patología , Animales , Axones , Ratones , Ratones Noqueados , Músculo Esquelético/inervación , Músculo Esquelético/patología , Vaina de Mielina , Compresión Nerviosa , Regeneración Nerviosa , Infiltración Neutrófila , Nervio Ciático/lesiones
9.
Trends Pharmacol Sci ; 37(11): 977-987, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27670389

RESUMEN

The G protein-coupled receptor (GPCR) superfamily represents the largest class of functionally selective drug targets for disease modulation and therapy. GPCRs have been studied in great detail in central nervous system (CNS) neurons, but these important molecules have been relatively understudied in glia. In recent years, however, exciting new roles for GPCRs in glial cell biology have emerged. We focus here on the key roles of GPCRs in a specialized subset of glia, myelinating glia. We highlight recent work firmly establishing GPCRs as regulators of myelinating glial cell development and myelin repair. These advances expand our understanding of myelinating glial cell biology and underscore the utility of targeting GPCRs to promote myelin repair in human disease.


Asunto(s)
Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Diseño de Fármacos , Humanos , Terapia Molecular Dirigida , Neuronas/metabolismo
10.
Nature ; 536(7617): 464-8, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27501152

RESUMEN

Ablation of the cellular prion protein PrP(C) leads to a chronic demyelinating polyneuropathy affecting Schwann cells. Neuron-restricted expression of PrP(C) prevents the disease, suggesting that PrP(C) acts in trans through an unidentified Schwann cell receptor. Here we show that the cAMP concentration in sciatic nerves from PrP(C)-deficient mice is reduced, suggesting that PrP(C) acts via a G protein-coupled receptor (GPCR). The amino-terminal flexible tail (residues 23-120) of PrP(C) triggered a concentration-dependent increase in cAMP in primary Schwann cells, in the Schwann cell line SW10, and in HEK293T cells overexpressing the GPCR Adgrg6 (also known as Gpr126). By contrast, naive HEK293T cells and HEK293T cells expressing several other GPCRs did not react to the flexible tail, and ablation of Gpr126 from SW10 cells abolished the flexible tail-induced cAMP response. The flexible tail contains a polycationic cluster (KKRPKPG) similar to the GPRGKPG motif of the Gpr126 agonist type-IV collagen. A KKRPKPG-containing PrPC-derived peptide (FT(23-50)) sufficed to induce a Gpr126-dependent cAMP response in cells and mice, and improved myelination in hypomorphic gpr126 mutant zebrafish (Danio rerio). Substitution of the cationic residues with alanines abolished the biological activity of both FT(23-50) and the equivalent type-IV collagen peptide. We conclude that PrP(C) promotes myelin homeostasis through flexible tail-mediated Gpr126 agonism. As well as clarifying the physiological role of PrP(C), these observations are relevant to the pathogenesis of demyelinating polyneuropathies--common debilitating diseases for which there are limited therapeutic options.


Asunto(s)
Priones/metabolismo , Priones/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Colágeno Tipo IV/química , Colágeno Tipo IV/farmacología , AMP Cíclico/metabolismo , Enfermedades Desmielinizantes/metabolismo , Femenino , Células HEK293 , Homeostasis/efectos de los fármacos , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Vaina de Mielina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Docilidad , Proteínas Priónicas , Priones/química , Priones/genética , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
11.
Neuron ; 85(4): 755-69, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25695270

RESUMEN

Myelin ensheathes axons to allow rapid propagation of action potentials and proper nervous system function. In the peripheral nervous system, Schwann cells (SCs) radially sort axons into a 1:1 relationship before wrapping an axonal segment to form myelin. SC myelination requires the adhesion G protein-coupled receptor GPR126, which undergoes autoproteolytic cleavage into an N-terminal fragment (NTF) and a seven-transmembrane-containing C-terminal fragment (CTF). Here we show that GPR126 has domain-specific functions in SC development whereby the NTF is necessary and sufficient for axon sorting, whereas the CTF promotes wrapping through cAMP elevation. These biphasic roles of GPR126 are governed by interactions with Laminin-211, which we define as a novel ligand for GPR126 that modulates receptor signaling via a tethered agonist. Our work suggests a model in which Laminin-211 mediates GPR126-induced cAMP levels to control early and late stages of SC development.


Asunto(s)
Laminina/metabolismo , Vaina de Mielina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células de Schwann/metabolismo , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Células COS , Células Cultivadas , Chlorocebus aethiops , Embrión de Mamíferos , Embrión no Mamífero , Ganglios Espinales/citología , Humanos , Técnicas In Vitro , Laminina/genética , Larva , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Morfolinos/farmacología , Vaina de Mielina/ultraestructura , Neuroglía/metabolismo , Neuroglía/ultraestructura , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Células de Schwann/ultraestructura , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Nat Commun ; 6: 6121, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25607655

RESUMEN

Mutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain malformation. However, the cellular role of GPR56 in oligodendrocyte development remains unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central nervous system in mice. GPR56 levels are abundant throughout early stages of oligodendrocyte development, but are downregulated in myelinating oligodendrocytes. Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC) proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes and a reduced number of myelinated axons in the corpus callosum and optic nerves. Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a cell-autonomous regulator of oligodendrocyte development.


Asunto(s)
Regulación de la Expresión Génica , Oligodendroglía/citología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Cuerpo Calloso/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mutación , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Nervio Óptico/metabolismo , Transducción de Señal , Tamoxifeno/química , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
14.
Cell Rep ; 9(6): 2018-26, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25533341

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) comprise the second largest yet least studied class of the GPCR superfamily. aGPCRs are involved in many developmental processes and immune and synaptic functions, but the mode of their signal transduction is unclear. Here, we show that a short peptide sequence (termed the Stachel sequence) within the ectodomain of two aGPCRs (GPR126 and GPR133) functions as a tethered agonist. Upon structural changes within the receptor ectodomain, this intramolecular agonist is exposed to the seven-transmembrane helix domain, which triggers G protein activation. Our studies show high specificity of a given Stachel sequence for its receptor. Finally, the function of Gpr126 is abrogated in zebrafish with a mutated Stachel sequence, and signaling is restored in hypomorphic gpr126 zebrafish mutants upon exogenous Stachel peptide application. These findings illuminate a mode of aGPCR activation and may prompt the development of specific ligands for this currently untargeted GPCR family.


Asunto(s)
Oligopéptidos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Humanos , Datos de Secuencia Molecular , Oligopéptidos/química , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Pez Cebra
15.
Ann N Y Acad Sci ; 1333: 43-64, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25424900

RESUMEN

The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated noncovalently as a heterodimer at the plasma membrane. While the biological function of the GAIN domain-mediated autocleavage is not fully understood, mounting evidence suggests that the NTF and CTF possess distinct biological activities in addition to their function as a receptor unit. We discuss recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs.


Asunto(s)
Adhesión Celular , Receptores Acoplados a Proteínas G/fisiología , Animales , Discapacidades del Desarrollo/genética , Humanos , Mutación , Neoplasias/genética , Transducción de Señal , Sinapsis/fisiología
16.
J Neurosci ; 33(46): 17976-85, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24227709

RESUMEN

The myelin sheath surrounding axons ensures that nerve impulses travel quickly and efficiently, allowing for the proper function of the vertebrate nervous system. We previously showed that the adhesion G-protein-coupled receptor (aGPCR) Gpr126 is essential for peripheral nervous system myelination, although the molecular mechanisms by which Gpr126 functions were incompletely understood. aGPCRs are a significantly understudied protein class, and it was unknown whether Gpr126 couples to G-proteins. Here, we analyze Dhh(Cre);Gpr126(fl/fl) conditional mutants, and show that Gpr126 functions in Schwann cells (SCs) for radial sorting of axons and myelination. Furthermore, we demonstrate that elevation of cAMP levels or protein kinase A activation suppresses myelin defects in Gpr126 mouse mutants and that cAMP levels are reduced in conditional Gpr126 mutant peripheral nerve. Finally, we show that GPR126 directly increases cAMP by coupling to heterotrimeric G-proteins. Together, these data support a model in which Gpr126 functions in SCs for proper development and myelination and provide evidence that these functions are mediated via G-protein-signaling pathways.


Asunto(s)
Diferenciación Celular/fisiología , Vaina de Mielina/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Células de Schwann/metabolismo , Animales , Células COS , Chlorocebus aethiops , Femenino , Proteínas de Unión al GTP/fisiología , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/ultraestructura , Células de Schwann/ultraestructura , Transducción de Señal/fisiología
17.
Proc Natl Acad Sci U S A ; 110(42): 16898-903, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082093

RESUMEN

Despite their abundance and multiple functions in a variety of organ systems, the function and signaling mechanisms of adhesion G protein-coupled receptors (GPCRs) are poorly understood. Adhesion GPCRs possess large N termini containing various functional domains. In addition, many of them are autoproteolytically cleaved at their GPS sites into an N-terminal fragment (NTF) and C-terminal fragment. Here we demonstrate that Gpr126 is expressed in the endocardium during early mouse heart development. Gpr126 knockout in mice and knockdown in zebrafish caused hypotrabeculation and affected mitochondrial function. Ectopic expression of Gpr126-NTF that lacks the GPS motif (NTF(ΔGPS)) in zebrafish rescued the trabeculation but not the previously described myelination phenotype in the peripheral nervous system. These data support a model in which the NTF of Gpr126, in contrast to the C-terminal fragment, plays an important role in heart development. Collectively, our analysis provides a unique example of the versatile function and signaling properties of adhesion GPCRs in vertebrates.


Asunto(s)
Endocardio/embriología , Mitocondrias Cardíacas/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Endocardio/citología , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Especificidad de Órganos/fisiología , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
J Neurochem ; 120(2): 302-13, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22007859

RESUMEN

The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis elegans study has shown that ablation of transbilayer amphipath transporter-1 (TAT-1), which is an ortholog of a mammalian P-type ATPase, Atp8a1, causes PS externalization in the germ cells. We demonstrate here that the hippocampal cells of the dentate gyrus, and Cornu Ammonis (CA1, CA3) in mice lacking Atp8a1 exhibit a dramatic increase in PS externalization. Although their hippocampi showed no abnormal morphology or heightened apoptosis, these mice displayed increased activity and a marked deficiency in hippocampus-dependent learning, but no hyper-anxiety. Such observations indicate that Atp8a1 plays a crucial role in PM-APLT activity in the neuronal cells. In corroboration, ectopic expression of Atp8a1 but not its close homolog, Atp8a2, caused an increase in the population (V(max) ) of PM-APLT without any change in its signature parameter K(m) in the neuronal N18 cells. Conversely, expression of a P-type phosphorylation-site mutant of Atp8a1 (Atp8a1*) caused a decrease in V(max) of PM-APLT without significantly altering its K(m) . The Atp8a1*-expressing N18 cells also exhibited PS externalization without apoptosis. Together, our data strongly indicate that Atp8a1 plays a central role in the PM-APLT activity of some mammalian cells, such as the neuronal N18 and hippocampal cells.


Asunto(s)
Adenosina Trifosfatasas/deficiencia , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/deficiencia , Animales , Anexina A5/metabolismo , Membrana Celular/metabolismo , Femenino , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Técnicas de Cultivo de Órganos , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosforilación/genética , Transporte de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA