Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 23(9): 724-735, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28718218

RESUMEN

AIM: Brain inflammation is associated with several brain diseases such as multiple sclerosis (MS), a disease characterized by demyelination. Whether prenatal immune challenge affects demyelination-induced inflammation in the white matter during adulthood is unclear. In the present study, we used a well-established experimental model of focal demyelination to assess whether prenatal immune challenge affects demyelination-induced inflammation. METHODS: Pregnant rats were injected with either lipopolysaccharide (100 µg/kg, ip) or pyrogen-free saline. A 2 µL solution of the gliotoxin ethidium bromide (0.04%) was stereotaxically infused into the corpus callosum of adult male offspring. The extent of demyelination lesion was assessed using Luxol fast blue (LFB) staining. Oligodendrocyte precursor cells, mature oligodendrocytes, markers of cellular gliosis, and inflammation were monitored in the vicinity of the demyelination lesion area. RESULTS: Prenatal lipopolysaccharide reduced the size of the demyelination lesion during adulthood. This reduced lesion was associated with enhanced density of mature oligodendrocytes and reduced density of microglial cells in the vicinity of the demyelination lesion. Such reduction in microglial cell density was accompanied by a reduced activation of the nuclear factor κB signaling pathway. CONCLUSION: These data strongly suggest that prenatal immune challenge dampens the extent of demyelination during adulthood likely by reprogramming the local brain inflammatory response to demyelinating insults.


Asunto(s)
Enfermedades Desmielinizantes/etiología , Vaina de Mielina/patología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio/metabolismo , Citratos/toxicidad , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Gliotoxina/análogos & derivados , Gliotoxina/toxicidad , Inmunosupresores/toxicidad , Lipopolisacáridos/toxicidad , Masculino , Proteínas de Microfilamentos/metabolismo , Proteínas de la Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
2.
Brain Struct Funct ; 222(4): 1797-1808, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27686571

RESUMEN

While it has been known that physical activity can improve cognitive function and protect against neurodegeneration, the underlying mechanisms for these protective effects are yet to be fully elucidated. There is a large body of evidence indicating that physical exercise improves neurogenesis and maintenance of neurons. Yet, its possible effects on glial cells remain poorly understood. Here, we tested whether physical exercise in mice alters the expression of trophic factor-related genes and the status of astrocytes in the dentate gyrus of the hippocampus. In addition to a significant increase in Bdnf mRNA and protein levels, we found that 4 weeks of treadmill and running wheel exercise in mice, led to (1) a significant increase in synaptic load in the dentate gyrus, (2) alterations in astrocytic morphology, and (3) orientation of astrocytic projections towards dentate granule cells. Importantly, these changes were possibly linked to increased TrkB receptor levels in astrocytes. Our study suggests that astrocytes actively respond and could indeed mediate the positive effects of physical exercise on the central nervous system and potentially counter degenerative processes during aging and neurodegenerative disorders.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Actividad Motora , Receptor trkB/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal
3.
Hippocampus ; 26(12): 1641-1654, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27701794

RESUMEN

It has been suggested that increased GABAergic innervation in the hippocampus plays a significant role in cognitive dysfunction in Down syndrome (DS). Bolstering this notion, are studies linking hyper-innervation of the dentate gyrus (DG) by GABAergic terminals to failure in LTP induction in the Ts65Dn mouse model of DS. Here, we used extensive morphometrical methods to assess the status of GABAergic interneurons in the DG of young and old Ts65Dn mice and their 2N controls. We detected an age-dependent increase in GABAergic innervation of dentate granule cells (DGCs) in Ts65Dn mice. The primary source of GABAergic terminals to DGCs somata is basket cells (BCs). For this reason, we assessed the status of these cells and found a significant increase in the number of BCs in Ts65Dn mice compared with controls. Then we aimed to identify the gene/s whose overexpression could be linked to increased number of BCs in Ts65Dn and found that deleting the third copy of App gene in Ts65Dn mice led to normalization of the number of BCs in these mice. Our data suggest that App overexpression plays a major role in the pathophysiology of GABAergic hyperinnervation of the DG in Ts65Dn mice. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/patología , Precursor de Proteína beta-Amiloide/metabolismo , Giro Dentado/patología , Síndrome de Down/patología , Neuronas GABAérgicas/patología , Interneuronas/patología , Envejecimiento/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Neuronas GABAérgicas/metabolismo , Inmunohistoquímica , Interneuronas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Ácido gamma-Aminobutírico/metabolismo
4.
Neurobiol Learn Mem ; 116: 162-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25463650

RESUMEN

Down syndrome (DS) has an incidence of about 1/700 births, and is therefore the most common cause of cognitive and behavioral impairments in children. Recent studies on mouse models of DS indicate that a number of pharmacotherapies could be beneficial for restoring cognitive abilities in individuals with DS. Attention deficits that are present in DS account in part for learning and memory deficiencies yet have been scarcely studied in corresponding models. Investigations of this relevant group of behaviors is more difficult in mouse models because of the difficulty in homologizing mouse and human behaviors and because standard laboratory environments do not always elicit behaviors of interest. Here we characterize nest building as a goal-directed behavior that is seriously impaired in young Ts65Dn mice, a genetic model of DS. We believe this impairment may reflect in part attention deficits, and we investigate the physiological, genetic, and pharmacological factors influencing its expression. Nesting behavior in young Ts65Dn mice was severely impaired when the animals were placed in a novel environment. But this context-dependent impairment was transient and reversible. The genetic determinants of this deficiency are restricted to a ∼100 gene segment on the murine chromosome 16. Nest building behavior is a highly integrated phenotypic trait that relies in part on limbic circuitry and on the frontal cortex in relation to cognitive and attention processes. We show that both serotonin content and 5HT2a receptors are increased in the frontal cortex of Ts65Dn mice and that pharmacological blockage of 5HT2a receptors in Ts65Dn mice rescues their context dependent nest building impairment. We propose that the nest-building trait could represent a marker of attention related deficits in DS models and could be of value in designing pharmacotherapies for this specific aspect of DS. 5HT2a modulation may improve goal-directed behavior in DS.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Síndrome de Down/fisiopatología , Comportamiento de Nidificación/fisiología , Receptor de Serotonina 5-HT2A/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/metabolismo , Expresión Génica , Ratones , Comportamiento de Nidificación/efectos de los fármacos , Fenotipo , Receptor de Serotonina 5-HT2A/genética , Risperidona/farmacología
5.
Biol Psychiatry ; 75(3): 179-88, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23827853

RESUMEN

BACKGROUND: Down syndrome is associated with significant failure in cognitive function. Our previous investigation revealed age-dependent degeneration of locus coeruleus, a major player in contextual learning, in the Ts65Dn mouse model of Down syndrome. We studied whether drugs already available for use in humans can be used to improve cognitive function in these mice. METHODS: We studied the status of ß adrenergic signaling in the dentate gyrus of the Ts65Dn mouse model of Down syndrome. Furthermore, we used fear conditioning to study learning and memory in these mice. Postmortem analyses included the analysis of synaptic density, dendritic arborization, and neurogenesis. RESULTS: We found significant atrophy of dentate gyrus and failure of ß adrenergic signaling in the hippocampus of Ts65Dn mice. Our behavioral analyses revealed that formoterol, a long-acting ß2 adrenergic receptor agonist, caused significant improvement in the cognitive function in Ts65Dn mice. Postmortem analyses revealed that the use of formoterol was associated with a significant improvement in the synaptic density and increased complexity of newly born dentate granule neurons in the hippocampus of Ts65Dn mice. CONCLUSIONS: Our data suggest that targeting ß2 adrenergic receptors is an effective strategy for restoring synaptic plasticity and cognitive function in these mice. Considering its widespread use in humans and positive effects on cognition in Ts65Dn mice, formoterol or similar ß2 adrenergic receptor agonists with ability to cross the blood brain barrier might be attractive candidates for clinical trials to improve cognitive function in individuals with Down syndrome.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Dendritas/efectos de los fármacos , Síndrome de Down/tratamiento farmacológico , Etanolaminas/farmacología , Etanolaminas/uso terapéutico , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Proliferación Celular/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Síndrome de Down/patología , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fumarato de Formoterol , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/patología , Hipocampo/ultraestructura , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Nadolol/farmacología , Neuronas/patología , Neuropéptidos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Sinaptofisina/metabolismo
6.
Neurosci Biobehav Rev ; 37(8): 1363-79, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23707776

RESUMEN

Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Serotonina/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Humanos , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Neuronas/patología
7.
Biol Psychiatry ; 71(5): 403-9, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21945306

RESUMEN

Down syndrome (DS) is the most common cause of cognitive dysfunction in children. Additionally, most adults with DS will eventually show both clinical and neuropathologic hallmarks of Alzheimer's disease (AD). The hippocampal formation constitutes the primary target for degeneration in both AD and DS. Over the past few years, we have studied the molecular mechanisms behind degeneration of this region and its major inputs in mouse models of DS. Our investigation has suggested that the loss of hippocampal inputs, particularly cholinergic and noradrenergic terminals, leads to de-afferentation of this region in the Ts65Dn mouse model of DS. Interestingly, we were able to link the overexpression of amyloid precursor protein (App) gene to degeneration of cholinergic and noradrenergic neurons in DS mouse models. We examined the underlying mechanisms of degeneration of multiple systems with extensive projections to the hippocampus in DS and its mouse models and the role of App overexpression in neurodegeneration. Understanding mechanisms behind hippocampal dysfunction has helped us to test several therapeutic strategies successfully in mouse models of DS. Here we review these strategies and mechanisms and discuss ways to translate our findings into possible interventions in humans.


Asunto(s)
Precursor de Proteína beta-Amiloide/biosíntesis , Encéfalo/metabolismo , Encéfalo/fisiopatología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Síndrome de Down/metabolismo , Síndrome de Down/psicología , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/fisiología , Animales , Encéfalo/patología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Síndrome de Down/patología , Humanos
8.
J Alzheimers Dis ; 26 Suppl 3: 29-47, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21971449

RESUMEN

Hippocampal structural and functional alterations in Alzheimer's disease (AD), detected by advanced imaging methods, have been linked to significant abnormalities in multiple internal and external networks in this critical brain region. Uncovering the temporal and anatomical pattern of these network alterations would provide important clues into understanding the pathophysiology of AD and suggest new therapeutic strategies for this multi-system and prevalent disorder. Over the last decade, we have focused on studying brain structures that provide major projections to the hippocampus (HC) and the pattern of de-afferentation of this area in mouse models of AD and a related neurodegenerative disorder, i.e. Down syndrome (DS). Our studies have revealed that major inputs into the hippocampal structure undergo significant age-dependent alterations. Studying locus coeruleus (LC), the sole source of noradrenergic terminals for the HC, it has been shown that these neurons show significant age-dependent degeneration in both mouse models of DS and AD. Furthermore, increasing noradrenergic signaling was able to restore cognitive function by improving synaptic plasticity, and possibly promoting microglia recruitment, and amyloid ß (Aß) clearance in transgenic (tg) mouse models of AD. Here, we re-examine the effects of alterations in major inputs to the hippocampal region and their structural and functional consequences in mouse models of neurodegenerative disorders. We will conclude that improving the function of major hippocampal inputs could lead to a significant improvement in cognitive function in both AD and DS.


Asunto(s)
Enfermedad de Alzheimer/patología , Síndrome de Down/patología , Hipocampo/fisiopatología , Vías Nerviosas/fisiopatología , Enfermedad de Alzheimer/genética , Animales , Cromosomas Humanos Par 21 , Modelos Animales de Enfermedad , Síndrome de Down/genética , Hipocampo/metabolismo , Humanos , Ratones , Modelos Biológicos , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...