Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (200)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870310

RESUMEN

Thyroid hormones (TH) play a critical role in cell metabolism and tissue function. TH economy is susceptible to endocrine disrupting chemicals (EDCs) that can disturb hormone production or action. Many environmental pollutants are EDCs, representing an emerging threat to both human health and agricultural production. This has led to an increased demand for proper test systems to examine the effects of potential EDCs. However, current methodologies face challenges. Most test systems use endogenous markers regulated by multiple, often complex regulatory processes, making it difficult to distinguish direct and indirect effects. Moreover, in vitro test systems lack the physiological complexity of EDC metabolism and pharmacokinetics in mammals. Additionally, exposure to environmental EDCs usually involves a mixture of multiple compounds, including in vivo generated metabolites, so the possibility of interactions cannot be ignored. This complexity makes EDC characterization difficult. The Thyroid Hormone Action Indicator (THAI) mouse is a transgenic model that carries a TH-responsive luciferase reporter system, enabling the assessment of tissue-specific TH action. One can evaluate the tissue-specific effects of chemicals on local TH action by quantifying luciferase reporter expression in tissue samples. Furthermore, with in vivo imaging, the THAI mouse model allows for longitudinal studies on the effects of potential EDCs in live animals. This approach provides a powerful tool for testing long-term exposure, complex treatment structures, or withdrawal, as it enables the assessment of changes in local TH action over time in the same animal. This report describes the process of in vivo imaging measurements on THAI mice. The protocol discussed here focuses on developing and imaging hyper- and hypothyroid mice, which can serve as controls. Researchers can adapt or expand the treatments presented to meet their specific needs, offering a foundational approach for further investigation.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Humanos , Ratones , Animales , Hormonas Tiroideas/metabolismo , Luciferasas , Mamíferos/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674439

RESUMEN

Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.


Asunto(s)
Hiperalgesia , Receptor Toll-Like 4 , Ratas , Animales , Hiperalgesia/metabolismo , Dipeptidil Peptidasa 4 , Isoleucina , Nocicepción , Dolor/metabolismo , Fragmentos de Péptidos/farmacología , Médula Espinal/metabolismo , Inflamación/metabolismo
3.
Thyroid ; 33(1): 109-118, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322711

RESUMEN

Background: Non-Thyroidal Illness Syndrome (NTIS) caused by infection or fasting is hallmarked by reduced circulating thyroid hormone (TH) levels. To better understand the role of local TH-action in the development of NTIS, we assessed tissue-specific changes of TH signaling in Thyroid Hormone Action Indicator (THAI) mice. Methods: NTIS was induced in young adult THAI mice by bacterial lipopolysaccharide (LPS)-administration or by 24 or 48 hours' fasting. Tissue-specific TH-action was assessed by the detection of changes of the Luciferase reporter of THAI mice with quantitative polymerase chain reaction along with tissue-specific examination of regulators of TH metabolism and signaling. Age dependence of revealed alterations of hypothalamic TH-action was also studied in 1-year-old male THAI mice. Results: LPS-treatment increased TH-action in the hypothalamic arcuate nucleus-median eminence (ARC-ME) region preceded by an increase of type 2 deiodinase (D2) expression in the same region and followed by the suppression of proTrh expression in the hypothalamic paraventricular nucleus (PVN). In contrast, LPS decreased both TH-action and D2 activity in the pituitary at both ages. Tshß expression and serum free thyroxine (fT4) and free triiodothyronine (fT3) levels decreased in LPS-treated young adults. Tshß expression and serum fT4 levels were not significantly affected by LPS treatment in aged animals. In contrast to LPS treatment, TH-action remained unchanged in the ARC-ME of 24 and 48 hours fasted animals accompanied with a modest decrease of proTrh expression in the PVN in the 24-hour group. Tshß expression and fT3 level were decreased in both fasted groups, but the fT4 decreased only in the 48 hours fasted animals. Conclusions: Although the hypothalamo-pituitary-thyroid (HPT) axis is inhibited both in LPS and fasting-induced NTIS, LPS achieves this by centrally inducing local hyperthyroidism in the ARC-ME region, while fasting acts without affecting hypothalamic TH signaling. Lack of downregulation of Tshß and fT4 in LPS-treated aged THAI mice suggests age-dependent alterations in the responsiveness of the HPT axis. The LPS-induced tissue-specific hypo-, eu-, and hyperthyroidism in different tissues of the same animal indicate that under certain conditions TH levels alone could be a poor marker of tissue TH signaling. In conclusion, decreased circulating TH levels in these two forms of NTIS are associated with different patterns of hypothalamic TH signaling.


Asunto(s)
Síndromes del Eutiroideo Enfermo , Hipotálamo , Hormonas Tiroideas , Animales , Masculino , Ratones , Síndromes del Eutiroideo Enfermo/inducido químicamente , Síndromes del Eutiroideo Enfermo/metabolismo , Síndromes del Eutiroideo Enfermo/patología , Ayuno , Hipertiroidismo , Sistema Hipotálamo-Hipofisario/metabolismo , Lipopolisacáridos/metabolismo , Hormonas Tiroideas/metabolismo , Hipotálamo/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499108

RESUMEN

Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.


Asunto(s)
Bifenilos Polibrominados , Humanos , Masculino , Ratones , Animales , Larva/metabolismo , Bifenilos Polibrominados/toxicidad , Hormonas Tiroideas/metabolismo , Transducción de Señal , Mamíferos/metabolismo
5.
Nat Commun ; 13(1): 3394, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697700

RESUMEN

The thyroid hormone (TH)-controlled recruitment process of brown adipose tissue (BAT) is not fully understood. Here, we show that long-term treatment of T3, the active form of TH, increases the recruitment of thermogenic capacity in interscapular BAT of male mice through hyperplasia by promoting the TH receptor α-mediated adipocyte progenitor cell proliferation. Our single-cell analysis reveals the heterogeneous nature and hierarchical trajectory within adipocyte progenitor cells of interscapular BAT. Further analyses suggest that T3 facilitates cell state transition from a more stem-like state towards a more committed adipogenic state and promotes cell cycle progression towards a mitotic state in adipocyte progenitor cells, through mechanisms involving the action of Myc on glycolysis. Our findings elucidate the mechanisms underlying the TH action in adipocyte progenitors residing in BAT and provide a framework for better understanding of the TH effects on hyperplastic growth and adaptive thermogenesis in BAT depot at a single-cell level.


Asunto(s)
Tejido Adiposo Pardo , Triyodotironina , Adipocitos/metabolismo , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Proliferación Celular , Hiperplasia/metabolismo , Masculino , Ratones , Receptores de Hormona Tiroidea/metabolismo , Termogénesis , Hormonas Tiroideas/metabolismo , Triyodotironina/metabolismo , Triyodotironina/farmacología
6.
Endocrinology ; 159(2): 1159-1171, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253128

RESUMEN

Thyroid hormone (TH) is present in the systemic circulation and thus should affect all cells similarly in the body. However, tissues have a complex machinery that allows tissue-specific optimization of local TH action that calls for the assessment of TH action in a tissue-specific manner. Here, we report the creation of a TH action indicator (THAI) mouse model to study tissue-specific TH action. The model uses a firefly luciferase reporter readout in the context of an intact transcriptional apparatus and all elements of TH metabolism and transport and signaling. The THAI mouse allows the assessment of the changes of TH signaling in tissue samples or in live animals using bioluminescence, both in hypothyroidism and hyperthyroidism. Beyond pharmacologically manipulated TH levels, the THAI mouse is sufficiently sensitive to detect deiodinase-mediated changes of TH action in the interscapular brown adipose tissue (BAT) that preserves thermal homeostasis during cold stress. The model revealed that in contrast to the cold-induced changes of TH action in the BAT, the TH action in this tissue, at room temperature, is independent of noradrenergic signaling. Our data demonstrate that the THAI mouse can also be used to test TH receptor isoform-specific TH action. Thus, THAI mouse constitutes a unique model to study tissue-specific TH action within a physiological/pathophysiological context and test the performance of thyromimetics. In conclusion, THAI mouse provides an in vivo model to assess a high degree of tissue specificity of TH signaling, allowing alteration of tissue function in health and disease, independently of changes in circulating levels of TH.


Asunto(s)
Genes Reporteros , Elementos de Respuesta , Hormonas Tiroideas/farmacología , Hormonas Tiroideas/fisiología , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Hipertiroidismo/genética , Hipertiroidismo/metabolismo , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Proc Natl Acad Sci U S A ; 112(45): 14018-23, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26508642

RESUMEN

Thyroid hormone binds to nuclear receptors and regulates gene transcription. Here we report that in mice, at around the first day of life, there is a transient surge in hepatocyte type 2 deiodinase (D2) that activates the prohormone thyroxine to the active hormone triiodothyronine, modifying the expression of ∼165 genes involved in broad aspects of hepatocyte function, including lipid metabolism. Hepatocyte-specific D2 inactivation (ALB-D2KO) is followed by a delay in neonatal expression of key lipid-related genes and a persistent reduction in peroxisome proliferator-activated receptor-γ expression. Notably, the absence of a neonatal D2 peak significantly modifies the baseline and long-term hepatic transcriptional response to a high-fat diet (HFD). Overall, changes in the expression of approximately 400 genes represent the HFD response in control animals toward the synthesis of fatty acids and triglycerides, whereas in ALB-D2KO animals, the response is limited to a very different set of only approximately 200 genes associated with reverse cholesterol transport and lipase activity. A whole genome methylation profile coupled to multiple analytical platforms indicate that 10-20% of these differences can be related to the presence of differentially methylated local regions mapped to sites of active/suppressed chromatin, thus qualifying as epigenetic modifications occurring as a result of neonatal D2 inactivation. The resulting phenotype of the adult ALB-D2KO mouse is dramatic, with greatly reduced susceptibility to diet-induced steatosis, hypertriglyceridemia, and obesity.


Asunto(s)
Susceptibilidad a Enfermedades/enzimología , Hígado Graso/enzimología , Regulación del Desarrollo de la Expresión Génica/genética , Hepatocitos/metabolismo , Yoduro Peroxidasa/metabolismo , Obesidad/enzimología , Análisis de Varianza , Animales , Animales Recién Nacidos , Calorimetría Indirecta , Metilación de ADN , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Perfilación de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Noqueados , Análisis por Micromatrices , Obesidad/etiología , Triyodotironina/sangre
8.
Fluids Barriers CNS ; 12: 21, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26337286

RESUMEN

BACKGROUND: We recently reported that bacterial lipopolysaccharide (LPS)-induced inflammation decreases the expression of the primary thyroid hormone transporters at the blood-brain barrier, organic anion-transporting polypeptide 1c1 (OATP1c1) and monocarboxylate transporter 8 (MCT8). L-type amino acid transporters 1 and 2 (LAT1 & LAT2) are regarded as secondary thyroid hormone transporters, and are expressed in cells of the blood-brain or blood-cerebrospinal fluid barrier and by neurons. The purpose of this study was to examine the effect of LPS-induced inflammation on the expression of LAT1 and LAT2, as these may compensate for the downregulation of OATP1c1 and MCT8. METHODS: LPS (2.5 mg/kg body weight) was injected intraperitoneally to adult, male, Sprague-Dawley rats and C57Bl/6 mice, which were euthanized 2, 4, 9, 24 or 48 h later. LAT1 and LAT2 mRNA expression were studied on forebrain sections using semiquantitative radioactive in situ hybridization. LAT1 protein levels in brain vessels were studied using LAT1 immunofluorescence. Statistical comparisons were made by the non-parametric Kruskal-Wallis and Dunn's tests. RESULTS: In both species, LAT1 mRNA decreased in brain blood vessels as soon as 2 h after LPS injection and was virtually undetectable at 4 h and 9 h. During recovery from endotoxemia, 48 h after LPS injection, LAT1 mRNA in brain vessels increased above control levels. A modest but significant decrease in LAT1 protein levels was detected in the brain vessels of mice at 24 h following LPS injection. LPS did not affect LAT1 and LAT2 mRNA expression in neurons and choroid plexus epithelial cells. CONCLUSIONS: The results demonstrate that LPS-induced inflammation rapidly decreases LAT1 mRNA expression at the blood-brain barrier in a very similar manner to primary thyroid hormone transporters, while changes in LAT1 protein level follow a slower kinetics. The data raise the possibility that inflammation may similarly down-regulate other blood-brain barrier transport systems at the transcriptional level. Future studies are required to examine this possibility and the potential pathophysiological consequences of inflammation-induced changes in blood-brain barrier transport functions.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Barrera Hematoencefálica/metabolismo , Encefalitis/metabolismo , Prosencéfalo/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encefalitis/inducido químicamente , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Endocrinology ; 156(4): 1552-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25594699

RESUMEN

There is increasing evidence that local thyroid hormone (TH) availability changes profoundly in inflammatory conditions due to altered expression of deiodinases that metabolize TH. It is largely unknown, however, how inflammation affects TH availability via the expression of TH transporters. In this study we examined the effect of bacterial lipopolysaccharide (LPS) administration on two TH transporters that are critically important for brain TH homeostasis, organic anion-transporting polypeptide 1c1 (OATP1c1), and monocarboxylate transporter 8 (MCT8). MRNA levels were studied by in situ hybridization and qPCR as well as protein levels by immunofluorescence in both the rat and mouse forebrain. The mRNA of both transporters decreased robustly in the first 9 hours after LPS injection, specifically in brain blood vessels; OATP1c1 mRNA in astrocytes and MCT8 mRNA in neurons remained unchanged. At 24 and/or 48 hours after LPS administration, OATP1c1 and MCT8 mRNAs increased markedly above control levels in brain vessels. OATP1c1 protein decreased markedly in vessels by 24 hours whereas MCT8 protein levels did not decrease significantly. These changes were highly similar in mice and rats. The data demonstrate that OATP1c1 and MCT8 expression are regulated in a parallel manner during inflammation at the blood-brain barrier of rodents. Given the indispensable role of both transporters in allowing TH access to the brain, the results suggest reduced brain TH uptake during systemic inflammation.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Endotoxemia/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Animales , Astrocitos/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/genética , Neuronas/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Prosencéfalo/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Simportadores
10.
J Clin Endocrinol Metab ; 100(3): 920-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25569702

RESUMEN

CONTEXT: A common polymorphism in the gene encoding the activating deiodinase (Thr92Ala-D2) is known to be associated with quality of life in millions of patients with hypothyroidism and with several organ-specific conditions. This polymorphism results in a single amino acid change within the D2 molecule where its susceptibility to ubiquitination and proteasomal degradation is regulated. OBJECTIVE: To define the molecular mechanisms underlying associated conditions in carriers of the Thr92Ala-D2 polymorphism. DESIGN, SETTING, PATIENTS: Microarray analyses of 19 postmortem human cerebral cortex samples were performed to establish a foundation for molecular studies via a cell model of HEK-293 cells stably expressing Thr92 or Ala92 D2. RESULTS: The cerebral cortex of Thr92Ala-D2 carriers exhibits a transcriptional fingerprint that includes sets of genes involved in CNS diseases, ubiquitin, mitochondrial dysfunction (chromosomal genes encoding mitochondrial proteins), inflammation, apoptosis, DNA repair, and growth factor signaling. Similar findings were made in Ala92-D2-expressing HEK-293 cells and in both cases there was no evidence that thyroid hormone signaling was affected ie, the expression level of T3-responsive genes was unchanged, but that several other genes were differentially regulated. The combined microarray analyses (brain/cells) led to the development of an 81-gene classifier that correctly predicts the genotype of homozygous brain samples. In contrast to Thr92-D2, Ala92-D2 exhibits longer half-life and was consistently found in the Golgi. A number of Golgi-related genes were down-regulated in Ala92-D2-expressing cells, but were normalized after 24-h-treatment with the antioxidant N-acetylecysteine. CONCLUSIONS: Ala92-D2 accumulates in the Golgi, where its presence and/or ensuing oxidative stress disrupts basic cellular functions and increases pre-apoptosis. These findings are reminiscent to disease mechanisms observed in other neurodegenerative disorders such as Huntington's disease, and could contribute to the unresolved neurocognitive symptoms of affected carriers.


Asunto(s)
Yoduro Peroxidasa/genética , Enfermedades del Sistema Nervioso/genética , Polimorfismo de Nucleótido Simple , Enfermedades de la Tiroides/genética , Transcriptoma , Adulto , Alanina/genética , Sustitución de Aminoácidos , Estudios de Casos y Controles , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Frecuencia de los Genes , Células HEK293 , Células HeLa , Humanos , Masculino , Análisis por Micromatrices , Enfermedades del Sistema Nervioso/patología , Estrés Oxidativo/genética , Síndrome , Treonina/genética , Enfermedades de la Tiroides/patología , Yodotironina Deyodinasa Tipo II
11.
Int J Mol Med ; 31(2): 437-46, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23232950

RESUMEN

Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 µM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 µM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6­morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 µM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.


Asunto(s)
Adenosina/uso terapéutico , Citoprotección/efectos de los fármacos , Inosina/uso terapéutico , Hígado/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Adenosina/farmacología , Células Hep G2 , Humanos , Inosina/farmacología , Hígado/patología , Daño por Reperfusión/patología
12.
PLoS One ; 7(6): e37860, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719854

RESUMEN

Hypothalamic neurosecretory systems are fundamental regulatory circuits influenced by thyroid hormone. Monocarboxylate-transporter-8 (MCT8)-mediated uptake of thyroid hormone followed by type 3 deiodinase (D3)-catalyzed inactivation represent limiting regulatory factors of neuronal T3 availability. In the present study we addressed the localization and subcellular distribution of D3 and MCT8 in neurosecretory neurons and addressed D3 function in their axons. Intense D3-immunoreactivity was observed in axon varicosities in the external zone of the rat median eminence and the neurohaemal zone of the human infundibulum containing axon terminals of hypophysiotropic parvocellular neurons. Immuno-electronmicroscopy localized D3 to dense-core vesicles in hypophysiotropic axon varicosities. N-STORM-superresolution-microscopy detected the active center containing C-terminus of D3 at the outer surface of these organelles. Double-labeling immunofluorescent confocal microscopy revealed that D3 is present in the majority of GnRH, CRH and GHRH axons but only in a minority of TRH axons, while absent from somatostatin-containing neurons. Bimolecular-Fluorescence-Complementation identified D3 homodimers, a prerequisite for D3 activity, in processes of GT1-7 cells. Furthermore, T3-inducible D3 catalytic activity was detected in the rat median eminence. Triple-labeling immunofluorescence and immuno-electronmicroscopy revealed the presence of MCT8 on the surface of the vast majority of all types of hypophysiotropic terminals. The presence of MCT8 was also demonstrated on the axon terminals in the neurohaemal zone of the human infundibulum. The unexpected role of hypophysiotropic axons in fine-tuned regulation of T3 availability in these cells via MCT8-mediated transport and D3-catalyzed inactivation may represent a novel regulatory core mechanism for metabolism, growth, stress and reproduction in rodents and humans.


Asunto(s)
Hipotálamo/fisiología , Neuronas/fisiología , Hormonas Tiroideas/metabolismo , Animales , Axones , Técnica del Anticuerpo Fluorescente , Humanos , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Mol Endocrinol ; 25(12): 2065-75, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22053000

RESUMEN

Cells respond rapidly to endoplasmic reticulum (ER) stress by blocking protein translation, increasing protein folding capacity, and accelerating degradation of unfolded proteins via ubiquitination and ER-associated degradation pathways. The ER resident type 2 deiodinase (D2) is normally ubiquitinated and degraded in the proteasome, a pathway that is accelerated by enzyme catalysis of T(4) to T(3). To test whether D2 is normally processed through ER-associated degradation, ER stress was induced in cells that endogenously express D2 by exposure to thapsigargin or tunicamycin. In all cell models, D2 activity was rapidly lost, to as low as of 30% of control activity, without affecting D2 mRNA levels; loss of about 40% of D2 activity and protein was also seen in human embryonic kidney 293 cells transiently expressing D2. In primary human airway cells with ER stress resulting from cystic fibrosis, D2 activity was absent. The rapid ER stress-induced loss of D2 resulted in decreased intracellular D2-mediated T(3) production. ER stress-induced loss of D2 was prevented in the absence of T(4), by blocking the proteasome with MG-132 or by treatment with chemical chaperones. Notably, ER stress did not alter D2 activity half-life but rather decreased D2 synthesis as assessed by induction of D2 mRNA and by [(35)S]methionine labeling. Remarkably, ER-stress-induced loss in D2 activity is prevented in cells transiently expressing an inactive eukaryotic initiation factor 2, indicating that this pathway mediates the loss of D2 activity. In conclusion, D2 is selectively lost during ER stress due to an eukaryotic initiation factor 2-mediated decrease in D2 synthesis and sustained proteasomal degradation. This explains the lack of D2 activity in primary human airway cells with ER stress resulting from cystic fibrosis.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Yoduro Peroxidasa/metabolismo , Tiroxina/metabolismo , Triyodotironina/biosíntesis , Animales , Línea Celular , Fibrosis Quística/enzimología , Regulación hacia Abajo , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Yoduro Peroxidasa/genética , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal , Tapsigargina , Factor de Transcripción CHOP/metabolismo , Tunicamicina , Yodotironina Deyodinasa Tipo II
14.
J Thyroid Res ; 2011: 215718, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21876836

RESUMEN

Thyroid hormone plays a crucial role in the development and function of the nervous system. In order to bind to its nuclear receptor and regulate gene transcription thyroxine needs to be activated in the brain. This activation occurs via conversion of thyroxine to T3, which is catalyzed by the type 2 iodothyronine deiodinase (D2) in glial cells, in astrocytes, and tanycytes in the mediobasal hypothalamus. We discuss how thyroid hormone affects glial cell function followed by an overview on the fine-tuned regulation of T3 generation by D2 in different glial subtypes. Recent evidence on the direct paracrine impact of glial D2 on neuronal gene expression underlines the importance of glial-neuronal interaction in thyroid hormone regulation as a major regulatory pathway in the brain in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...