Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
IEEE Trans Biomed Eng ; 71(2): 456-466, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37682653

RESUMEN

OBJECTIVE: We propose an efficient approach based on a convolutional denoising autoencoder (CDA) network to reduce motion and noise artifacts (MNA) from corrupted atrial fibrillation (AF) and non-AF photoplethysmography (PPG) data segments so that an accurate PPG-signal-derived heart rate can be obtained. Our method's main innovation is the optimization of the CDA performance for both rhythms using more AF than non-AF data for training the AF-specific CDA model and vice versa for the non-AF CDA network. METHODS: To evaluate this unconventional training scheme, our proposed network was trained and tested on 25-sec PPG data segments from 48 subjects from two different databases-the Pulsewatch dataset and Stanford University's publicly available PPG dataset. In total, our dataset contains 10,773 data segments: 7,001 segments for training and 3,772 independent segments from out-of-sample subjects for testing. RESULTS: Using real-life corrupted PPG segments, our approach significantly reduced the average heart rate root mean square error (RMSE) of the reconstructed PPG segments by 45.74% and 23% compared to the corrupted non-AF and AF data, respectively. Further, our approach exhibited lower RMSE, and higher sensitivity and PPV for detected peaks compared to the reconstructed data produced by the alternative methods. CONCLUSION: These results show the promise of our approach as a reliable denoising method, which should be used prior to AF detection algorithms for an accurate cardiac health monitoring involving wearable devices. SIGNIFICANCE: PPG signals collected from wearables are vulnerable to MNA, which limits their use as a reliable measurement, particularly in uncontrolled real-life environments.


Asunto(s)
Fibrilación Atrial , Fotopletismografía , Humanos , Fotopletismografía/métodos , Fibrilación Atrial/diagnóstico , Frecuencia Cardíaca/fisiología , Monitoreo Fisiológico , Movimiento (Física) , Algoritmos , Procesamiento de Señales Asistido por Computador , Artefactos
2.
Front Digit Health ; 5: 1243959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125757

RESUMEN

Background: Increasing ownership of smartphones among Americans provides an opportunity to use these technologies to manage medical conditions. We examine the influence of baseline smartwatch ownership on changes in self-reported anxiety, patient engagement, and health-related quality of life when prescribed smartwatch for AF detection. Method: We performed a post-hoc secondary analysis of the Pulsewatch study (NCT03761394), a clinical trial in which 120 participants were randomized to receive a smartwatch-smartphone app dyad and ECG patch monitor compared to an ECG patch monitor alone to establish the accuracy of the smartwatch-smartphone app dyad for detection of AF. At baseline, 14 days, and 44 days, participants completed the Generalized Anxiety Disorder-7 survey, the Health Survey SF-12, and the Consumer Health Activation Index. Mixed-effects linear regression models using repeated measures with anxiety, patient activation, physical and mental health status as outcomes were used to examine their association with smartwatch ownership at baseline. Results: Ninety-six participants, primarily White with high income and tertiary education, were randomized to receive a study smartwatch-smartphone dyad. Twenty-four (25%) participants previously owned a smartwatch. Compared to those who did not previously own a smartwatch, smartwatch owners reported significant greater increase in their self-reported physical health (ß = 5.07, P < 0.05), no differences in anxiety (ß = 0.92, P = 0.33), mental health (ß = -2.42, P = 0.16), or patient activation (ß = 1.86, P = 0.54). Conclusions: Participants who own a smartwatch at baseline reported a greater positive change in self-reported physical health, but not in anxiety, patient activation, or self-reported mental health over the study period.

3.
JMIR Cardio ; 7: e45137, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015598

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is a common cause of stroke, and timely diagnosis is critical for secondary prevention. Little is known about smartwatches for AF detection among stroke survivors. We aimed to examine accuracy, usability, and adherence to a smartwatch-based AF monitoring system designed by older stroke survivors and their caregivers. OBJECTIVE: This study aims to examine the feasibility of smartwatches for AF detection in older stroke survivors. METHODS: Pulsewatch is a randomized controlled trial (RCT) in which stroke survivors received either a smartwatch-smartphone dyad for AF detection (Pulsewatch system) plus an electrocardiogram patch or the patch alone for 14 days to assess the accuracy and usability of the system (phase 1). Participants were subsequently rerandomized to potentially 30 additional days of system use to examine adherence to watch wear (phase 2). Participants were aged 50 years or older, had survived an ischemic stroke, and had no major contraindications to oral anticoagulants. The accuracy for AF detection was determined by comparing it to cardiologist-overread electrocardiogram patch, and the usability was assessed with the System Usability Scale (SUS). Adherence was operationalized as daily watch wear time over the 30-day monitoring period. RESULTS: A total of 120 participants were enrolled (mean age 65 years; 50/120, 41% female; 106/120, 88% White). The Pulsewatch system demonstrated 92.9% (95% CI 85.3%-97.4%) accuracy for AF detection. Mean usability score was 65 out of 100, and on average, participants wore the watch for 21.2 (SD 8.3) of the 30 days. CONCLUSIONS: Our findings demonstrate that a smartwatch system designed by and for stroke survivors is a viable option for long-term arrhythmia detection among older adults at risk for AF, though it may benefit from strategies to enhance adherence to watch wear. TRIAL REGISTRATION: ClinicalTrials.gov NCT03761394; https://clinicaltrials.gov/study/NCT03761394. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1016/j.cvdhj.2021.07.002.

4.
Cardiol Cardiovasc Med ; 7(2): 97-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476150

RESUMEN

Wrist-based wearables have been FDA approved for AF detection. However, the health behavior impact of false AF alerts from wearables on older patients at high risk for AF are not known. In this work, we analyzed data from the Pulsewatch (NCT03761394) study, which randomized patients (≥50 years) with history of stroke or transient ischemic attack to wear a patch monitor and a smartwatch linked to a smartphone running the Pulsewatch application vs to only the cardiac patch monitor over 14 days. At baseline and 14 days, participants completed validated instruments to assess for anxiety, patient activation, perceived mental and physical health, chronic symptom management self-efficacy, and medicine adherence. We employed linear regression to examine associations between false AF alerts with change in patient-reported outcomes. Receipt of false AF alerts was related to a dose-dependent decline in self-perceived physical health and levels of disease self-management. We developed a novel convolutional denoising autoencoder (CDA) to remove motion and noise artifacts in photoplethysmography (PPG) segments to optimize AF detection, which substantially reduced the number of false alerts. A promising approach to avoid negative impact of false alerts is to employ artificial intelligence driven algorithms to improve accuracy.

5.
JMIR Cardio ; 7: e41691, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780211

RESUMEN

BACKGROUND: The prevalence of atrial fibrillation (AF) increases with age and can lead to stroke. Therefore, older adults may benefit the most from AF screening. However, older adult populations tend to lag more than younger groups in the adoption of, and comfort with, the use of mobile health (mHealth) apps. Furthermore, although mobile apps that can detect AF are available to the public, most are designed for intermittent AF detection and for younger users. No app designed for long-term AF monitoring has released detailed system design specifications that can handle large data collections, especially in this age group. OBJECTIVE: This study aimed to design an innovative smartwatch-based AF monitoring mHealth solution in collaboration with older adult participants and clinicians. METHODS: The Pulsewatch system is designed to link smartwatches and smartphone apps, a website for data verification, and user data organization on a cloud server. The smartwatch in the Pulsewatch system is designed to continuously monitor the pulse rate with embedded AF detection algorithms, and the smartphone in the Pulsewatch system is designed to serve as the data-transferring hub to the cloud storage server. RESULTS: We implemented the Pulsewatch system based on the functionality that patients and caregivers recommended. The user interfaces of the smartwatch and smartphone apps were specifically designed for older adults at risk for AF. We improved our Pulsewatch system based on feedback from focus groups consisting of patients with stroke and clinicians. The Pulsewatch system was used by the intervention group for up to 6 weeks in the 2 phases of our randomized clinical trial. At the conclusion of phase 1, 90 trial participants who had used the Pulsewatch app and smartwatch for 14 days completed a System Usability Scale to assess the usability of the Pulsewatch system; of 88 participants, 56 (64%) endorsed that the smartwatch app is "easy to use." For phases 1 and 2 of the study, we collected 9224.4 hours of smartwatch recordings from the participants. The longest recording streak in phase 2 was 21 days of consecutive recordings out of the 30 days of data collection. CONCLUSIONS: This is one of the first studies to provide a detailed design for a smartphone-smartwatch dyad for ambulatory AF monitoring. In this paper, we report on the system's usability and opportunities to increase the acceptability of mHealth solutions among older patients with cognitive impairment. TRIAL REGISTRATION: ClinicalTrials.gov NCT03761394; https://www.clinicaltrials.gov/ct2/show/NCT03761394. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1016/j.cvdhj.2021.07.002.

6.
IEEE Trans Biomed Eng ; 69(9): 2982-2993, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35275809

RESUMEN

OBJECTIVE: With the increasing use of wearable healthcare devices for remote patient monitoring, reliable signal quality assessment (SQA) is required to ensure the high accuracy of interpretation and diagnosis on the recorded data from patients. Photoplethysmographic (PPG) signals non-invasively measured by wearable devices are extensively used to provide information about the cardiovascular system and its associated diseases. In this study, we propose an approach to optimize the quality assessment of the PPG signals. METHODS: We used an ensemble-based feature selection scheme to enhance the prediction performance of the classification model to assess the quality of the PPG signals. Our approach for feature and subset size selection yielded the best-suited feature subset, which was optimized to differentiate between the clean and artifact corrupted PPG segments. CONCLUSION: A high discriminatory power was achieved between two classes on the test data by the proposed feature selection approach, which led to strong performance on all dependent and independent test datasets. We achieved accuracy, sensitivity, and specificity rates of higher than 0.93, 0.89, and 0.97, respectively, for dependent test datasets, independent of heartbeat type, i.e., atrial fibrillation (AF) or non-AF data including normal sinus rhythm (NSR), premature atrial contraction (PAC), and premature ventricular contraction (PVC). For independent test datasets, accuracy, sensitivity, and specificity rates were greater than 0.93, 0.89, and 0.97, respectively, on PPG data recorded from AF and non-AF subjects. These results were found to be more accurate than those of all of the contemporary methods cited in this work. SIGNIFICANCE: As the results illustrate, the advantage of our proposed scheme is its robustness against dynamic variations in the PPG signal during long-term 14-day recordings accompanied with different types of physical activities and a diverse range of fluctuations and waveforms caused by different individual hemodynamic characteristics, and various types of recording devices. This robustness instills confidence in the application of the algorithm to various kinds of wearable devices as a reliable PPG signal quality assessment approach.


Asunto(s)
Fibrilación Atrial , Dispositivos Electrónicos Vestibles , Algoritmos , Artefactos , Electrocardiografía/métodos , Frecuencia Cardíaca , Humanos , Fotopletismografía/métodos , Procesamiento de Señales Asistido por Computador
7.
Biosensors (Basel) ; 12(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35200342

RESUMEN

OBJECTIVE: We have developed a peak detection algorithm for accurate determination of heart rate, using photoplethysmographic (PPG) signals from a smartwatch, even in the presence of various cardiac rhythms, including normal sinus rhythm (NSR), premature atrial contraction (PAC), premature ventricle contraction (PVC), and atrial fibrillation (AF). Given the clinical need for accurate heart rate estimation in patients with AF, we developed a novel approach that reduces heart rate estimation errors when compared to peak detection algorithms designed for NSR. METHODS: Our peak detection method is composed of a sequential series of algorithms that are combined to discriminate the various arrhythmias described above. Moreover, a novel Poincaré plot scheme is used to discriminate between basal heart rate AF and rapid ventricular response (RVR) AF, and to differentiate PAC/PVC from NSR and AF. Training of the algorithm was performed only with Samsung Simband smartwatch data, whereas independent testing data which had more samples than did the training data were obtained from Samsung's Gear S3 and Galaxy Watch 3. RESULTS: The new PPG peak detection algorithm provides significantly lower average heart rate and interbeat interval beat-to-beat estimation errors-30% and 66% lower-and mean heart rate and mean interbeat interval estimation errors-60% and 77% lower-when compared to the best of the seven other traditional peak detection algorithms that are known to be accurate for NSR. Our new PPG peak detection algorithm was the overall best performers for other arrhythmias. CONCLUSION: The proposed method for PPG peak detection automatically detects and discriminates between various arrhythmias among different waveforms of PPG data, delivers significantly lower heart rate estimation errors for participants with AF, and reduces the number of false negative peaks. SIGNIFICANCE: By enabling accurate determination of heart rate despite the presence of AF with rapid ventricular response or PAC/PVCs, we enable clinicians to make more accurate recommendations for heart rate control from PPG data.


Asunto(s)
Fibrilación Atrial , Complejos Prematuros Ventriculares , Algoritmos , Fibrilación Atrial/diagnóstico , Electrocardiografía , Frecuencia Cardíaca/fisiología , Humanos , Fotopletismografía/métodos , Complejos Prematuros Ventriculares/diagnóstico
8.
J Biomed Phys Eng ; 11(2): 205-214, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33937127

RESUMEN

BACKGROUND: Brain source imaging based on electroencephalogram (EEG) data aims to recover the neuron populations' activity producing the scalp potentials. This procedure is known as the EEG inverse problem. Recently, beamformers have gained a lot of consideration in the EEG inverse problem. OBJECTIVE: Beamformers lack acceptable performance in the case of correlated brain sources. These sources happen when some regions of the brain have simultaneous or correlated activities such as auditory stimulation or moving left and right extremities of the body at the same time. In this paper, we have developed a multichannel beamformer robust to correlated sources. MATERIAL AND METHODS: In this simulation study, we have looked at the problem of brain source imaging and beamforming from a blind source separation point of view. We focused on the spatially constraint independent component analysis (scICA) algorithm, which generally benefits from the pre-known partial information of mixing matrix, and modified the steps of the algorithm in a way that makes it more robust to correlated sources. We called the modified scICA algorithm Multichannel ICA based EEG Beamformer (MIEB). RESULTS: We evaluated the proposed algorithm on simulated EEG data and compared its performance quantitatively with three algorithms scICA, linearly-constrained minimum-variance (LCMV) and Dual-Core beamformers; it is considered that the latter is specially designed to reconstruct correlated sources. CONCLUSION: The MIEB algorithm has much better performance in terms of normalized mean squared error in recovering the correlated/uncorrelated sources both in noise free and noisy synthetic EEG signals. Therefore, it could be used as a robust beamformer in recovering correlated brain sources.

9.
Sensors (Basel) ; 20(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33028000

RESUMEN

We developed an algorithm to detect premature atrial contraction (PAC) and premature ventricular contraction (PVC) using photoplethysmographic (PPG) data acquired from a smartwatch. Our PAC/PVC detection algorithm is composed of a sequence of algorithms that are combined to discriminate various arrhythmias. A novel vector resemblance method is used to enhance the PAC/PVC detection results of the Poincaré plot method. The new PAC/PVC detection algorithm with our automated motion and noise artifact detection approach yielded a sensitivity of 86% for atrial fibrillation (AF) subjects while the overall sensitivity was 67% when normal sinus rhythm (NSR) subjects were also included. The specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy values for the combined data consisting of both NSR and AF subjects were 97%, 81%, 94% and 92%, respectively, for PAC/PVC detection combined with our automated motion and noise artifact detection approach. Moreover, when AF detection was compared with and without PAC/PVC, the sensitivity and specificity increased from 94.55% to 98.18% and from 95.75% to 97.90%, respectively. For additional independent testing data, we used two datasets: a smartwatch PPG dataset that was collected in our ongoing clinical study, and a pulse oximetry PPG dataset from the Medical Information Mart for Intensive Care III database. The PAC/PVC classification results of the independent testing on these two other datasets are all above 92% for sensitivity, specificity, PPV, NPV, and accuracy. The proposed combined approach to detect PAC and PVC can ultimately lead to better accuracy in AF detection. This is one of the first studies involving detection of PAC and PVC using PPG recordings from a smartwatch. The proposed method can potentially be of clinical importance as this enhanced capability can lead to fewer false positive detections of AF, especially for those NSR subjects with frequent episodes of PAC/PVC.


Asunto(s)
Fibrilación Atrial , Fotopletismografía , Complejos Prematuros Ventriculares , Anciano , Anciano de 80 o más Años , Algoritmos , Fibrilación Atrial/diagnóstico , Femenino , Atrios Cardíacos , Ventrículos Cardíacos , Humanos , Masculino , Microcomputadores , Persona de Mediana Edad , Sensibilidad y Especificidad , Complejos Prematuros Ventriculares/diagnóstico
10.
PLoS One ; 14(12): e0226249, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31825996

RESUMEN

This study aimed to examine the effects of chronic methamphetamine use on the topological organization of whole-brain functional connectivity network (FCN) by reconstruction of neural-activity time series at resting-state. The EEG of 36 individuals with methamphetamine use disorder (IWMUD) and 24 normal controls (NCs) were recorded, pre-processed and source-reconstructed using standardized low-resolution tomography (sLORETA). The brain FCNs of participants were constructed and between-group differences in network topological properties were investigated using graph theoretical analysis. IWMUD showed decreased characteristic path length, increased clustering coefficient and small-world index at delta and gamma frequency bands compared to NCs. Moreover, abnormal changes in inter-regional connectivity and network hubs were observed in all the frequency bands. The results suggest that the IWMUD and NCs have distinct FCNs at all the frequency bands, particularly at the delta and gamma bands, in which deviated small-world brain topology was found in IWMUD.


Asunto(s)
Trastornos Relacionados con Anfetaminas/patología , Encéfalo/fisiopatología , Electroencefalografía , Descanso/fisiología , Adulto , Trastornos Relacionados con Anfetaminas/metabolismo , Ansiedad/complicaciones , Ansiedad/patología , Mapeo Encefálico , Ondas Encefálicas , Depresión/complicaciones , Depresión/patología , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Estadísticas no Paramétricas , Estrés Psicológico , Adulto Joven
11.
Cogn Neurodyn ; 13(6): 519-530, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31741689

RESUMEN

Methamphetamine (meth) is potently addictive and is closely linked to high crime rates in the world. Since meth withdrawal is very painful and difficult, most abusers relapse to abuse in traditional treatments. Therefore, developing accurate data-driven methods based on brain functional connectivity could be helpful in classifying and characterizing the neural features of meth dependence to optimize the treatments. Accordingly, in this study, computation of functional connectivity using resting-state EEG was used to classify meth dependence. Firstly, brain functional connectivity networks (FCNs) of 36 meth dependent individuals and 24 normal controls were constructed by weighted phase lag index, in six frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), gamma (30-45 Hz) and wideband (1-45 Hz).Then, significant differences in graph metrics and connectivity values of the FCNs were used to distinguish the two groups. Support vector machine classifier had the best performance with 93% accuracy, 100% sensitivity, 83% specificity and 0.94 F-score for differentiating between MDIs and NCs. The best performance yielded when selected features were the combination of connectivity values and graph metrics in the beta frequency band.

12.
Artículo en Inglés | MEDLINE | ID: mdl-21096942

RESUMEN

It is known that the transformations estimated in most of the non-rigid image registration methods are not invertible. This means that the transformation is not one-to-one and also it defines the deformation only in one direction making the registration methods become inconsistent. The symmetric image registration method is a solution to constrain the estimated transformation to become more consistent. This technique promotes the quality of registration significantly. In this paper we present symmetric non-rigid image registration method using multi-scale approach, defining the registration progressively in four different image scales which used result of the previous level as the initial condition for the next level. Our proposed algorithm uses a symmetric cost function which includes forward and backward transformations. Regularization term is used for both forward and reverse deformation fields to control the spatial behavior of the transformation. The results show improving the image similarity and consistency compared to asymmetric methods.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...