Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 8(12): 8232-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26953934

RESUMEN

The long-term stability of InGaN photoanodes in liquid environments is an essential requirement for their use in photoelectrochemistry. In this paper, we investigate the relationships between the compositional changes at the surface of n-type In(x)Ga(1-x)N (x ∼ 0.10) and its photoelectrochemical stability in phosphate buffer solutions with pH 7.4 and 11.3. Surface analyses reveal that InGaN undergoes oxidation under photoelectrochemical operation conditions (i.e., under solar light illumination and constant bias of 0.5 VRHE), forming a thin amorphous oxide layer having a pH-dependent chemical composition. We found that the formed oxide is mainly composed of Ga-O bonds at pH 7.4, whereas at pH 11.3 the In-O bonds are dominant. The photoelectrical properties of InGaN photoanodes are intimately related to the chemical composition of their surface oxides. For instance, after the formation of the oxide layer (mainly Ga-O bonds) at pH 7.4, no photocurrent flow was observed, whereas the oxide layer (mainly In-O bonds) at pH 11.3 contributes to enhance the photocurrent, possibly because of its reported high photocatalytic activity. Once a critical oxide thickness was reached, especially at pH 7.4, no significant changes in the photoelectrical properties were observed for the rest of the test duration. This study provides new insights into the oxidation processes occurring at the InGaN/liquid interface, which can be exploited to improve InGaN stability and enhance photoanode performance for biosensing and water-splitting applications.

2.
Ultrason Sonochem ; 16(1): 11-4, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18603463

RESUMEN

Cauliflower-like ZnO nanostructures with average crystallite size of about 55 nm which have surface one dimensional (1D) nanoarrays with 10 nm diameter were successfully fabricated through a simple sonochemical route. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and room temperature photoluminescence (PL) characterizations were performed to investigate the morphological and structural properties of the obtained nanostructures. It has been shown that the synthesized cauliflower-like ZnO nanostructures irradiated UV luminescence and a green peak in visible band. Ultrasonic post-treatment of the particles for about 2 h increased the density of surface defects resulted in an increase in the green emission intensity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA