Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25564, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356522

RESUMEN

Alzheimer's disease (AD) is acknowledged as the main causative factor of dementia that affects millions of people around the world and is increasing at increasing pace. Okadaic acid (OA) is a toxic compound with ability to inhibit protein phosphatases and to induce tau protein hyperphosphorylation and Alzheimer's-like phenotype. Kolaviron (KV) is a bioflavonoid derived from Garcinia kola seeds with anti-antioxidative and anti-inflammation properties. The main goal of this study was to assess whether kolaviron can exert neuroprotective effect against okadaic acid-induced cognitive deficit. Rats had an intracerebroventricular (ICV) injection of OA and pretreated with KV at 50 or 100 mg/kg and examined for cognition besides histological and biochemical factors. OA group treated with KV at 100 mg/kg had less memory deficit in passive avoidance and novel object discrimination (NOD) tasks besides lower hippocampal levels of caspases 1 and 3, tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) as inflammatory factors, reactive oxygen species (ROS), protein carbonyl, malondialdehyde (MDA), and phosphorylated tau (p-tau) and higher level of acetylcholinesterase (AChE) activity, mitochondrial integrity index, superoxide dismutase (SOD), and glutathione (GSH). Moreover, KV pretreatment at 100 mg/kg attenuated hippocampal CA1 neuronal loss and glial fibrillary acidic protein (GFAP) reactivity as a factor of astrogliosis. In summary, KV was able to attenuate cognitive fall subsequent to ICV OA which is partly mediated through its neuroprotective potential linked to mitigation of tau hyperphosphorylation, apoptosis, pyroptosis, neuroinflammation, and oxidative stress and also improvement of mitochondrial health.

2.
J Chem Neuroanat ; 124: 102121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35718291

RESUMEN

Temporal lobe epilepsy (TLE) is presented the most common form of focal epilepsy with involvement of oxidative stress and neuroinflammation as important factors in its development. About one third of epileptic patients are intractable to currently available medications. Paeonol isolated from some herbs with traditional and medicinal uses has shown anti-oxidative and anti-inflammatory effects in different models of neurological disorders. In this research, we tried to evaluate the possible protective effect of paeonol in intrahippocampal kainate murine model of TLE. To induce TLE, kainate was microinjected into CA3 area of the hippocampus and paeonol was administered at two doses of 30 or 50 mg/kg. The results of this study showed that paeonol at the higher dose significantly reduces incidence of status epilepticus, hippocampal aberrant mossy fiber sprouting and also preserves neuronal density. Beneficial protective effect of paeonol was in parallel with partial reversal of some hippocampal oxidative stress markers (reactive oxygen species and malondialdehyde), caspase 1, glial fibrillary acidic protein, heme oxygenase 1, DNA fragmentation, and inflammation-associated factors (nuclear factor-kappa B, toll-like receptor 4, and tumor necrosis factor α). Our obtained data indicated anticonvulsant and neuroprotective effects of paeonol which is somewhat attributed to its anti-oxidative and anti-inflammation properties besides its attenuation of apoptosis, pyroptosis, and astrocyte activity.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ácido Kaínico , Acetofenonas/metabolismo , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Ácido Kaínico/metabolismo , Ácido Kaínico/farmacología , Ácido Kaínico/uso terapéutico , Ratones
3.
Iran J Med Sci ; 46(5): 373-382, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34539012

RESUMEN

Background: Acute liver failure (ALF) is a fatal clinical situation that rapidly leads to the loss of normal liver function. Esculetin is a natural herbal compound used for the management of various diseases such as cardiovascular and renal disorders. In this study, we evaluated the protective effects of esculetin in a mouse model of ALF. Methods: This article is a report on an experimental study that was conducted at Iran University of Medical Sciences in 2019. Forty-eight male C57BL/6 mice were randomly divided into control, LPS/D-Gal, and LPS/D-Gal+Esculetin (40 mg/kg) groups (n=16 per group). ALF was induced with an intraperitoneal injection of lipopolysaccharide (LPS)/D-galactosamine (D-Gal).The LPS/D-Gal group received a mixture of LPS (50 µg/kg) and D-Gal (400 mg/kg). The LPS/D-Gal+Esculetin group received esculetin by gavage 24 hours and one hour before receiving LPS/D-Gal. Six hours after LPS/D-Gal injection, the mice were sacrificed. Liver injury markers, including alanine aminotransferase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP), were measured in the serum. Oxidative stress indices and inflammatory markers such as interleukin-1 beta (IL-1ß), IL-6, and tumor necrosis factor-alpha (TNF-α) were measured in hepatic tissue. The histopathology of liver tissue was also assessed. The data were analyzed using one-way ANOVA, followed by the post hoc Tukey test. Results: Esculetin lowered oxidative stress and myeloperoxidase activity (P<0.001); reduced the serum levels of ALT (P=0.037), AST (P=0.032), and ALP (P=0.004); and decreased the hepatic levels of IL-1ß (P=0.002), IL-6 (P=0.004), toll-like receptor 4 (P<0.001), TNF-α (P=0.003), and nuclear factor-kappa B (P<0.001) as compared with LPS/D-Gal. Additionally, esculetin ameliorated hepatic tissue injury following LPS/D-Gal challenge. Conclusion: Esculetin can reduce liver injury through the mitigation of oxidative burden, inflammation, and neutrophil infiltration and also exerts hepatoprotective effects against ALF.


Asunto(s)
Galactosamina/farmacología , Lipopolisacáridos/farmacología , Fallo Hepático Agudo/tratamiento farmacológico , Umbeliferonas/farmacología , Animales , Modelos Animales de Enfermedad , Galactosamina/uso terapéutico , Interleucina-1beta/análisis , Interleucina-1beta/sangre , Interleucina-6/análisis , Interleucina-6/sangre , Irán , Lipopolisacáridos/uso terapéutico , Fallo Hepático Agudo/patología , Fallo Hepático Agudo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/sangre , Factores Protectores , Receptor Toll-Like 4/análisis , Receptor Toll-Like 4/sangre , Umbeliferonas/uso terapéutico
4.
Malar J ; 19(1): 231, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600425

RESUMEN

BACKGROUND: Resistance of Plasmodium falciparum against common anti-malarial drugs emphasizes the need of alternative and more effective drugs. Synthetic derivatives of 1-(heteroaryl)-2-((5-nitroheteroaryl)methylene) hydrazine have showed in vitro anti-plasmodial activities. The present study aimed to evaluate the molecular binding and anti-plasmodial activity of synthetic compounds in vivo. METHODS: The molecular docking was used to study the binding of compounds to haem and Plasmodium falciparum lactate dehydrogenase (PfLDH). Acute toxicity of the synthetic compounds was evaluated based on the modified up & down method. The anti-plasmodial activity of the compounds was conducted by the two standard tests of Peters' and of Rane, using chloroquine-sensitive Plasmodium berghei in mice. Also, the toxicity to the internal organs of mice was evaluated on the seventh day after the treatment in addition to the histopathology of their liver. Compound 3 that showed high activity in the lowest dose was selected for further pharmacodynamic studies. RESULTS: According to the docking studies, the active site of PfLDH had at least four common residues, including Ala98, Ile54, Gly29, and Tyr97 to bind the compounds with the affinity, ranging from - 8.0 to - 8.4 kcal/mol. The binding mode of ligands to haem revealed an effective binding affinity, ranging from - 5.1 to - 5.5 kcal/mol. Compound 2 showed the highest  % suppression of parasitaemia (99.09%) at the dose of 125 mg/kg/day in Peters' test. Compound 3, with 79.42% suppression, was the best in Rane's test at the lowest dose (31 mg/kg/day). Compound 3 was confirmed by the pharmacodynamic study to have faster initial parasite elimination in the lowest concentration. The histopathology of the livers of mice did not reveal any focal necrosis of hepatocytes in the studied compounds. CONCLUSIONS: The docking studies verified Pf LDH inhibition and the inhibitory effect on the haemozoin formation for the studied compounds. Accordingly, some compounds may provide new avenues for the development of anti-malarial drugs without liver toxicity, although further studies are required to optimize their anti-plasmodial activity.


Asunto(s)
Antimaláricos/farmacología , Hidrazinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/toxicidad , Simulación por Computador , Femenino , Hidrazinas/toxicidad , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Distribución Tisular
5.
J Chem Neuroanat ; 108: 101800, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32430101

RESUMEN

Oxidative stress, inflammation and pyroptosis are three of the most important mechanisms in the pathophysiology of temporal lobe epilepsy (TLE). Most people with TLE are refractory to the existing drugs. Sinomenine has shown neuroprotective effects through counteracting oxidative stress, inflammation and pyroptosis. In this study, we evaluated the effect of sinomenine on seizure behavior, oxidative stress, inflammation and pyroptosis markers in addition to its neuroprotective potential in intrahippocampal kainate-induced rat model of TLE. For this purpose, male rats (n = 60) were randomly divided into five groups, i.e., sham, kainate (lesion) with an intrahippocampal injection of kainate, kainate groups receiving sinomenine at doses of 30 or 50 mg/kg, and kainate group receiving valproic acid at a dose of 200 mg/kg (as the positive control). Our obtained data showed that sinomenine administration at a dose of 50 mg/kg can significantly decreases severity of seizures and incidence of status epilepticus (SE), hippocampal aberrant MFS and DNA fragmentation and prevents reduction of neuronal density. It also significantly restored level of ROS, MDA, HO-1 and SOD but its effect on GSH level was not significant. Additionally, sinomenine at a dose of 50 mg/kg partially counteracted the increase of NF-κB, TLR 4, TNFα, GFAP and caspase 1. These results suggest that sinomenine has anticonvulsant and neuroprotective effects by reducing hippocampal oxidative stress, inflammation, pyroptosis and apoptosis in intrahippocampal kainate model of TLE.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Morfinanos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/fisiología , Piroptosis/efectos de los fármacos , Animales , Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/metabolismo , Ácido Kaínico , Masculino , Morfinanos/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo
6.
Microb Pathog ; 146: 104243, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32389705

RESUMEN

Acute liver failure (ALF) is a deadly clinical syndrome, which leads to a rapid loss of normal liver function. Diosgenin is a natural steroidal sapogenin found in various plant families. Various studies have shown that diosgenin have therapeutic or preventive effect in various diseases such as cancer, cardiovascular disorders, type 2 diabetes, and neurodegenerative disorders. In this study, we evaluated effects of diosgenin on mice model of ALF. Animal model of ALF was induced by intraperitoneal injection of lipopolysaccharide (LPS)/d-galactosamine (D-Gal). The male C57BL/6 mice were randomly divided into 3 groups: control group, LPS/D-Gal group, and LPS/D-Gal + diosgenin group (50 mg/kg). Mice in the LPS/D-Gal group received a combination of LPS (50 µg/kg) and D-Gal (400 mg/kg) intraperitoneally. LPS/D-Gal + diosgenin group received diosgenin twice orally 24 h and 1 h before receiving LPS/D-Gal. Markers of liver injury including ALT, AST and ALP were measured in blood samples in addition to determination of oxidative stress and inflammatory markers including MDA, nitrite, ROS, catalase, SOD, Nrf2, IL-1ß, IL-6, TLR4, TNF-α and NF-κB in hepatic tissue. Administration of diosgenin could greatly reduce serum levels of ALT, AST, and ALP. Besides, hepatic levels of MDA, ROS, IL-1ß, IL-6, TLR4, TNF-α, and NF-κB significantly decreased and SOD activity and Nrf2 level increased in comparison with the LPS/D-Gal group. In addition, myeloperoxidase activity as a marker of neutrophil infiltration decreased following diosgenin administration. In summary, diosgenin led to reduction of liver injury indices and oxidative stress and inflammatory events and diosgenin has probably hepatoprotecive effects in ALF.


Asunto(s)
Diosgenina/farmacología , Fallo Hepático Agudo/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL
7.
Metab Brain Dis ; 34(6): 1747-1759, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31422512

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative amyloid disorder with progressive deterioration of cognitive and memory skills. Despite many efforts, no decisive therapy yet exists for AD. Safranal is the active constituent of saffron essential oil with antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, the possible beneficial effect of safranal on cognitive deficits was evaluated in a rat model of AD induced by intrahippocampal amyloid beta (Aß1-40). Safranal was daily given p.o. (0.025, 0.1, and 0.2 ml/kg) post-surgery for 1 week and finally learning and memory were evaluated in addition to assessment of the involvement of oxidative stress, inflammation, and apoptosis. Findings showed that safranal treatment of amyloid ß-microinjected rats dose-dependently improved cognition in Y-maze, novel-object discrimination, passive avoidance, and 8-arm radial arm maze tasks. Besides, safranal attenuated hippocampal level of malondialdehyde (MDA), reactive oxygen species (ROS), protein carbonyl, interleukin 1ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor α (TNFα), nuclear factor-kappa B (NF-kB), apoptotic biomarkers including caspase 3 and DNA fragmentation, glial fibrillary acidic protein (GFAP), myeloperoxidase (MPO), and acetylcholinesterase (AChE) activity and improved superoxide dismutase (SOD) activity and mitochondrial membrane potential (MMP) with no significant effect on nitrite, catalase activity, and glutathione (GSH). Furthermore, safranal prevented CA1 neuronal loss due to amyloid ß1-40. In summary, safranal treatment of intrahippocampal amyloid beta1-40-microinjected rats could prevent learning and memory decline via neuronal protection and at a molecular level through amelioration of apoptosis, oxidative stress, inflammation, cholinesterase activity, neutrophil infiltration, and also by preservation of mitochondrial integrity.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos del Conocimiento/tratamiento farmacológico , Ciclohexenos/uso terapéutico , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Terpenos/uso terapéutico , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Animales , Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Ciclohexenos/farmacología , Fragmentación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inflamación/metabolismo , Masculino , Malondialdehído/metabolismo , Fragmentos de Péptidos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Terpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...