Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 102(12): 1520-8, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18483407

RESUMEN

In native and primary cultures of endothelial cells, fluid shear stress elicits the tyrosine phosphorylation of the endothelial NO synthase (eNOS), however, the consequences of this modification on enzyme activity are unclear. We found that fluid shear stress induces the association of eNOS with the proline-rich tyrosine kinase 2 (PYK2) in endothelial cells and that the eNOS immunoprecipitated from eNOS- and PYK2-overexpressing HEK293 cells was tyrosine-phosphorylated on Tyr657. In mouse carotid arteries, the overexpression of wild-type PYK2, but not a dominant-negative PYK2, decreased eNOS activity (approximately 50%), whereas in murine lung endothelial cells, the downregulation of PYK2 (small interfering RNA) increased ionomycin-induced NO production. Mutation of Tyr657 to the phosphomimetic residues aspartate (D) or glutamate (E) abolished enzyme activity, whereas a nonphosphorylatable mutant (phenylalanine [F]) showed activity comparable to the wild-type enzyme. Moreover, normal flow-induced vasodilatation was apparent in carotid arteries from eNOS(-/-) mice overexpressing either the wild-type eNOS or the Y657F mutant, whereas no flow-induced vasodilatation was apparent in arteries expressing the Y657E eNOS mutant. Insulin also activated PYK2 and stimulated eNOS in endothelial cells expressing the Y657F mutant but not wild-type eNOS. These data indicate that PYK2 mediates the tyrosine phosphorylation of eNOS on Tyr657 in response to fluid shear stress and insulin stimulation and that this modification attenuates the activity of the enzyme. The PYK2-dependent inhibition of NO production may serve to keep eNOS activity low and limit the detrimental consequences of maintained high NO output, ie, the generation of peroxynitrite.


Asunto(s)
Células Endoteliales/enzimología , Quinasa 2 de Adhesión Focal/fisiología , Insulina/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Animales , Aorta/citología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/enzimología , Células Endoteliales/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Quinasa 2 de Adhesión Focal/biosíntesis , Quinasa 2 de Adhesión Focal/genética , Ionomicina/farmacología , Pulmón/citología , Ratones , Mutación Missense , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/fisiología , Mutación Puntual , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/fisiología , Reología , Estrés Mecánico , Sus scrofa
2.
FASEB J ; 21(1): 81-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17135367

RESUMEN

Ribavirin is a broad-spectrum antiviral drug that is used to treat hepatitis C virus (HCV)-infected patients. The virological response after ribavirin treatment appears to be insufficient to fully explain ribavirin-induced beneficial effects. Angiogenesis plays a pathogenic role in HCV-induced liver damage. Here, we investigated the influence of therapeutic ribavirin concentrations on angiogenesis. Ribavirin inhibited endothelial cell tube formation in vitro and vessel formation in the chick chorioallantoic membrane assay in vivo. Ribavirin inhibits inosine monophosphate dehydrogenase, which causes depletion of cellular GTP and in turn reduction of cellular tetrahydrobiopterin levels. The availability of tetrahydrobiopterin limits NO production by endothelial NO synthase. Ribavirin reduced levels of tetrahydrobiopterin (as revealed by HPLC), NO (as revealed by electron spin resonance spectroscopy), and cGMP (as revealed by RIA) in endothelial cells. Addition of tetrahydrobiopterin or NO prevented ribavirin-induced tube formation inhibition. In conclusion, angiogenesis inhibition by ribavirin has not been described before. This inhibition may contribute to ribavirin-induced pharmacological effects including adverse events.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Biopterinas/análogos & derivados , Neovascularización Patológica/prevención & control , Ribavirina/farmacología , Animales , Biopterinas/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Pollos , Cromatografía Líquida de Alta Presión , GMP Cíclico/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Humanos , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/metabolismo , Radioinmunoensayo
3.
Proc Natl Acad Sci U S A ; 103(39): 14537-41, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16983080

RESUMEN

Bone marrow mononuclear cells (BMC) from patients with ischemic cardiomyopathy (ICMP) show a reduced neovascularization capacity in vivo. NO plays an important role in neovascularization, and NO bioavailability is typically reduced in patients with ICMP. We investigated whether the impaired neovascularization capacity of ICMP patient-derived progenitor cells can be restored by pretreatment with the novel endothelial NO synthase (eNOS) transcription enhancer AVE9488 (AVE). Ex vivo pretreatment of BMC from patients with ICMP with AVE significantly increased eNOS mRNA expression by 2.1-fold (P < 0.05) and eNOS activity as assessed by ESR by >3-fold (P < 0.05). The increased eNOS expression was associated with an enhanced migratory capacity in vitro (P < 0.01) and improved neovascularization capacity of the infused BMC in an ischemic hind limb model in vivo (P < 0.001). The improvement in ischemic limb perfusion after infusion of AVE-pretreated BMC resulted in an increase in swimming time (P < 0.05). The enhancement of limb perfusion by AVE-treated BMC was abrogated by ex vivo pretreatment with the eNOS inhibitor N(G)-nitro-l-arginine methyl ester. Consistently, AVE showed no effect on the impaired migratory capacity of BMC derived from eNOS-deficient mice, documenting the specific involvement of NO. The reduced neovascularization capacity of BMC from patients with ICMP may limit their therapeutic potential in cell therapy studies. Here, we show that pharmacological enhancement of eNOS expression with AVE at least partially reverses the impaired functional activity of BMC from ICMP patients, highlighting the critical role of NO for progenitor cell function.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inhibidores Enzimáticos/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Células de la Médula Ósea/citología , Movimiento Celular/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Miembro Posterior/patología , Humanos , Isquemia/inducido químicamente , Leucocitos Mononucleares/citología , Ratones , Ratones Desnudos , Neovascularización Patológica , Óxido Nítrico Sintasa de Tipo III/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Circ Res ; 97(12): 1236-44, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16284184

RESUMEN

Fluid shear stress enhances NO production in endothelial cells by a mechanism involving the activation of the phosphatidylinositol 3-kinase and the phosphorylation of the endothelial NO synthase (eNOS). We investigated the role of the scaffolding protein Gab1 and the tyrosine phosphatase SHP2 in this signal transduction cascade in cultured and native endothelial cells. Fluid shear stress elicited the phosphorylation and activation of Akt and eNOS as well as the tyrosine phosphorylation of Gab1 and its association with the p85 subunit of phosphatidylinositol 3-kinase and SHP2. Overexpression of a Gab1 mutant lacking the pleckstrin homology domain abrogated the shear stress-induced phosphorylation of Akt but failed to affect the phosphorylation or activity of eNOS. The latter response, however, was sensitive to a protein kinase A (PKA) inhibitor. Mutation of Gab1 Tyr627 to phenylalanine (YF-Gab1) to prevent the binding of SHP2 completely prevented the shear stress-induced phosphorylation of eNOS, leaving the Akt response intact. A dominant-negative SHP2 mutant prevented the activation of PKA and phosphorylation of eNOS without affecting that of Akt. Moreover, shear stress elicited the formation of a signalosome complex including eNOS, Gab1, SHP2 and the catalytic subunit of PKA. In isolated murine carotid arteries, flow-induced vasodilatation was prevented by a PKA inhibitor as well as by overexpression of either the YF-Gab1 or the dominant-negative SHP2 mutant. Thus, the shear stress-induced activation of eNOS depends on Gab1 and SHP2, which, in turn, regulate the phosphorylation and activity of eNOS by a PKA-dependent but Akt-independent mechanism.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Endotelio Vascular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfoproteínas/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Acetilcolina/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Células Cultivadas , Activación Enzimática , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Flujo Sanguíneo Regional , Transducción de Señal , Estrés Mecánico , Porcinos , Tirosina/metabolismo , Vasodilatación/efectos de los fármacos
5.
Cardiovasc Res ; 65(4): 897-906, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15721870

RESUMEN

OBJECTIVE: Oxidized low-density lipoprotein (ox-LDL) increases superoxide anion (O(2)(-)) production by the endothelial nitric oxide (NO) synthase (eNOS). We assessed whether the uncoupling of eNOS was associated with alterations in eNOS phosphorylation and/or the assembly of the eNOS signaling complex. METHODS AND RESULTS: In unstimulated human endothelial cells, eNOS Thr(495) was constitutively phosphorylated. ox-LDL, but not native LDL, enhanced the production of O(2)(-) by endothelial cells, an effect that was partially sensitive to NOS inhibition. ox-LDL, but not native LDL, induced a time- and concentration-dependent decrease in the phosphorylation of eNOS on Thr(495). Protein kinase C (PKC) has been reported to phosphorylate this residue, and the increase in the phosphorylation of Thr(495) induced by phorbol 12-myristate 13-acetate was attenuated in cells pretreated with ox-LDL. Moreover, the phosphorylation and activity of PKCalpha was attenuated by ox-LDL and paralleled the changes in eNOS phosphorylation. ox-LDL also induced the dissociation of eNOS from the plasma and Golgi membranes. In COS-7 cells, a T495A eNOS mutant generated significantly more O(2)(-) than a T495D mutant did, indicating that the dephosphorylation of Thr(495) alone can increase O(2)(-) production by eNOS. However, although the dephosphorylation of Thr(495) in histamine-stimulated endothelial cells enhanced the binding of calmodulin to eNOS, calmodulin no longer bound to eNOS from ox-LDL-treated endothelial cells. CONCLUSIONS: These results indicate that a decrease in the activity of PKCalpha in ox-LDL-treated endothelial cells is associated with the dephosphorylation of eNOS, dissociation of the eNOS signaling complex, and the enhanced production of eNOS-derived O(2)(-).


Asunto(s)
Lipoproteínas LDL/farmacología , Óxido Nítrico Sintasa/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Superóxidos/metabolismo , Animales , Células COS , Células Cultivadas , GMP Cíclico/biosíntesis , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Humanos , Lisofosfatidilcolinas/farmacología , Óxido Nítrico Sintasa de Tipo III , Fosforilación , Proteína Quinasa C/fisiología , Proteína Quinasa C-alfa , Transducción de Señal/efectos de los fármacos , Porcinos
6.
Free Radic Res ; 38(12): 1257-67, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15763950

RESUMEN

Dihydrocalcein (H2-calcein) is recommended as a superior probe for intracellular radical (ROS) detection as different to dichlorodihydrofluorescein (H2-DCF), its oxidation product calcein is thought not to leak out of cells. We determined whether H2-calcein is a useful tool to measure ROS in vascular smooth muscle cells. In vitro, both compounds were oxidized by peroxynitrite, hydroxyl radicals and peroxidase, but not hydrogen peroxide or nitric oxide. The intracellular half-life of calcein was several hours whereas that of DCF was approximately 5 min. Intracellular ROS, as generated by the angiotensin II (Ang II)-activated NADPH oxidase, did not increase the oxidation of H2-calcein but increased the oxidation of H2-DCF by approximately 50%. Similar changes were detected using electron spin resonance spectroscopy. Inhibition of the NADPH oxidase using gp91ds-tat prevented the Ang II-induced increase in DCF fluorescence, without affecting cells loaded with H2-calcein. Diphenylene iodonium (DPI), which inhibits all flavin-dependent enzymes, including those in the respiratory chain, had little effect on the basal but prevented the Ang II-induced oxidation of H2-DCF. In contrast, DPI inhibited H2-calcein oxidation in non-stimulated cells by almost 50%. Blockade of respiratory chain complex I inhibited H2-calcein oxidation, whereas inhibitors of complex III were without effect. Calcein accumulated in the mitochondria, whereas DCF was localized in the cytoplasm. In submitochondrial particles, H2-calcein, but not H2-DCF inhibited complex I activity. These observations indicate that H2-DCF is an indicator for intracellular ROS, whereas the oxidation of H2-calcein most likely occurs as a consequence of direct electron transfer to mitochondrial complex I.


Asunto(s)
Fluoresceínas/análisis , Colorantes Fluorescentes/análisis , Miocitos del Músculo Liso/química , Especies Reactivas de Oxígeno/análisis , Angiotensina II/farmacología , Animales , Aorta/citología , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Complejo I de Transporte de Electrón/metabolismo , Fluoresceínas/química , Fluoresceínas/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Semivida , Mitocondrias/química , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo , Peroxidasa/química , Ácido Peroxinitroso/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA