Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Med Int ; 2023: 8339591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37732161

RESUMEN

This study assessed the influence of supplementing the rabbit semen extender with various concentrations of glutathione (GSH) and taurine at 24, 48, and 72 h postchilling at 5°C. Semen samples were collected from 20 New Zealand bucks, and ejaculates with standard color, motility (>85%), about 0.5 mL volume, and ∼400 × 106/mL concentration were used and diluted with extenders supplemented with 0.5, 1, and 2 mM of GSH and 1, 5, and 10 mM of taurine and chilled at 5°C. Nonsupplemented samples were used as a control. Sperm's progressive motility, acrosome reaction, and extracellular oxidative stress biomarkers such as MDA contents and GPx, SOD, and CAT concentrations and intracellular transcriptomic levels of SOD and CAT genes were assessed. GSH and taurine supplementation improved the sperm's kinetics by reducing cooling-associated stress, which was ascertained by lowering MDA concentration and increasing SOD, CAT, and GPx concentrations (P < 0.05). Increasing the levels of antioxidant enzymes in the extender was due to the increasing mRNA copies of the SOD and CAT genes (P < 0.05). Furthermore, GSH and taurine maintained the fructose levels in the extender and lowered the GPT levels, which implies sperm membrane stability is maintained through GSH and taurine supplementation. GSH and taurine supplementation to the extender had protective influences on the in vitro rabbit semen quality during chilled storage for up to 72 h, which were remarkable with increasing supplementation dose and cooling time at 5°C.

2.
J Dent Res ; 102(2): 187-196, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377066

RESUMEN

Bone sialoprotein (BSP) is an extracellular matrix (ECM) protein associated with mineralized tissues, particularly bone and cementum. BSP includes functional domains implicated in collagen binding, hydroxyapatite nucleation, and cell signaling, although its function(s) in osteoblast and osteoclast differentiation and function remain incompletely understood. Genetic ablation of BSP in Ibsp knockout (Ibsp-/-) mice results in developmental bone mineralization and remodeling defects, with alveolar bone more severely affected than the femurs and tibias of the postcranial skeleton. The role of BSP in alveolar bone healing has not been studied. We hypothesized that BSP ablation would cause defective alveolar bone healing. We employed a maxillary first molar extraction socket healing model in 42-d postnatalIbsp-/- and wild-type (WT) control mice. Tissues were collected at 0, 7, 14, 21, and 56 d postprocedure (dpp) for analysis by micro-computed tomography (microCT), histology, in situ hybridization (ISH), immunohistochemistry (IHC), and quantitative polymerase chain reaction (qPCR) array. As expected, alveolar bone healing progressed in WT mice with increasing bone volume fraction (BV/TV), bone mineral density (BMD), and tissue mineral density (TMD), transitioning from woven to mature bone from 7 to 56 dpp. Ibsp messenger RNA (mRNA) and BSP protein were strongly expressed during alveolar bone healing in parallel with other osteogenic markers. Compared to WT, Ibsp-/- mice exhibited 50% to 70% reduced BV/TV and BMD at all time points, 7% reduced TMD at 21 dpp, abnormally increased Col1a1 and Alpl mRNA expression, and persistent presence of woven bone and increased bone marrow in healing sockets. qPCR revealed substantially dysregulated gene expression in alveolar bone of Ibsp-/- versus WT mice, with significantly disrupted expression of 45% of tested genes in functional groups, including markers for osteoblasts, osteoclasts, mineralization, ECM, cell signaling, and inflammation. We conclude that BSP is a critical and nonredundant factor for alveolar bone healing, and its absence disrupts multiple major pathways involved in appropriate healing.


Asunto(s)
Cemento Dental , Osteopontina , Animales , Ratones , Sialoproteína de Unión a Integrina/genética , Osteopontina/metabolismo , Microtomografía por Rayos X , Cemento Dental/metabolismo , ARN Mensajero , Sialoglicoproteínas/metabolismo
3.
J Dent Res ; 100(13): 1482-1491, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33906518

RESUMEN

Mutations in the PHEX gene lead to X-linked hypophosphatemia (XLH), a form of inherited rickets featuring elevated fibroblast growth factor 23 (FGF23), reduced 1,25-dihydroxyvitamin D (1,25D), and hypophosphatemia. Hyp mutant mice replicate the XLH phenotype, including dentin, alveolar bone, and cementum defects. We aimed to compare effects of 1,25D versus FGF23-neutralizing antibody (FGF23Ab) monotherapies on Hyp mouse dentoalveolar mineralization. Male Hyp mice, either injected subcutaneously with daily 1,25D or thrice weekly with FGF23 blocking antibody from 2 to 35 d postnatal, were compared to wild-type (WT) controls and untreated Hyp mice. Mandibles were analyzed by high-resolution micro-computed tomography (micro-CT), histology, and immunohistochemistry. Both interventions maintained normocalcemia, increased serum phosphate levels, and improved dentoalveolar mineralization in treated versus untreated Hyp mice. 1,25D increased crown dentin volume and thickness and root dentin/cementum volume, whereas FGF23Ab effects were limited to crown dentin volume. 1,25D increased bone volume fraction, bone mineral density, and tissue mineral density in Hyp mice, whereas FGF23Ab failed to significantly affect these alveolar bone parameters. Neither treatment fully attenuated dentin and bone defects to WT levels, and pulp volumes remained elevated regardless of treatment. Both treatments reduced predentin thickness and improved periodontal ligament organization, while 1,25D promoted a more profound improvement in acellular cementum thickness. Altered cell densities and lacunocanalicular properties of alveolar and mandibular bone osteocytes and cementocytes in Hyp mice were partially corrected by either treatment. Neither treatment normalized the altered distributions of bone sialoprotein and osteopontin in Hyp mouse alveolar bone. Moderate improvements from both 1,25D and FGF23Ab treatment regimens support further studies and collection of oral health data from subjects receiving a newly approved anti-FGF23 therapy. The inability of either treatment to fully correct Hyp mouse dentin and bone prompts further experiments into underlying pathological mechanisms to identify new therapeutic approaches.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Animales , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Masculino , Ratones , Vitamina D , Microtomografía por Rayos X
4.
J Dent Res ; 100(12): 1359-1366, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33899571

RESUMEN

Bone loss caused by trauma, neoplasia, congenital defects, or periodontal disease is a major cause of disability and human suffering. Skeletal progenitor cell-extracellular matrix interactions are critical for bone regeneration. Discoidin domain receptor 2 (DDR2), an understudied collagen receptor, plays an important role in skeletal development. Ddr2 loss-of-function mutations in humans and mice cause severe craniofacial and skeletal defects, including altered cranial shape, dwarfing, reduced trabecular and cortical bone, alveolar bone/periodontal defects, and altered dentition. However, the role of this collagen receptor in craniofacial regeneration has not been examined. To address this, calvarial subcritical-size defects were generated in wild-type (WT) and Ddr2-deficient mice. The complete bridging seen in WT controls at 4 wk postsurgery was not observed in Ddr2-deficient mice even after 12 wk. Quantitation of defect bone area by micro-computed tomography also revealed a 50% reduction in new bone volume in Ddr2-deficient mice. Ddr2 expression during calvarial bone regeneration was measured using Ddr2-LacZ knock-in mice. Expression was restricted to periosteal surfaces of uninjured calvarial bone and, after injury, was detected in select regions of the defect site by 3 d postsurgery and expanded during the healing process. The impaired bone healing associated with Ddr2 deficiency may be related to reduced osteoprogenitor or osteoblast cell proliferation and differentiation since knockdown/knockout of Ddr2 in a mesenchymal cell line and primary calvarial osteoblast cultures reduced osteoblast differentiation while Ddr2 overexpression was stimulatory. In conclusion, Ddr2 is required for cranial bone regeneration and may be a novel target for therapy.


Asunto(s)
Regeneración Ósea , Receptor con Dominio Discoidina 2 , Cráneo , Animales , Ratones , Osteoblastos , Microtomografía por Rayos X
5.
Vet Anim Sci ; 10: 100130, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32734030

RESUMEN

The current study aimed to evaluate the efficiency of dietary nucleotides-supplementation on broiler chickens to alleviate the intestinal Clostridium perfringens (C. perfringens) levels and its adverse effect on gut and growth performance parameters. In this study, a total of 270 one-day-old mixed broiler chicks (Cobb 500) were randomly divided into six treatment groups with three replicates of 15 chicks/ replicate. Treatment 1 (CX), a negative control group was fed corn-soybean basal diet without added nucleotides. Treatment 2 (CN 0.05) and treatment 3 (CN 0.1), consisted of chicks were fed the basal diet with the addition of nucleotides on top at two levels (0.05 and 0.1%) respectively. Treatment 4 (PX), treatment 5 (PN 0.05), and treatment 6 (PN 0.1) consisted of chicks that were challenged with C. perfringens inoculum (~4 × 108 CFU/ml) on day 14, 15, 16 and 17of the experiment and were fed diets similar to treatments 1, 2, and 3 respectively. The trial continued for 35 days. At the end of the experiment, the intestinal C. perfringens counts, microscopic lesion scores, intestinal histomorphology, intestinal barriers (occludin and mucin mRNA expression) and growth parameters were determined. The results showed that the pathogen challenge significantly (P˂0.05) increased both C. perfringens levels and intestinal lesion scores. Which adversely affects intestinal barriers and intestinal histomorphology resulting in a significant decrease (P˂0.05) in body weight gain (BWG) with an increase in feed conversion ratio (FCR). Whereas, nucleotides-supplementation, at 0.1%, significantly decreased both C. perfringens levels and intestinal lesion scores, and significantly improved intestinal barriers and intestinal histomorphology which consequently resulted in improved growth performance parameters to be nearly the same as that of the control un-supplemented group. In conclusion, nucleotides markedly ameliorated the negative effects of C. perfringens challenge by improving the intestinal barrier function and intestinal histomorphology which positively reflected on the growth performance of challenged birds.

6.
J Dairy Sci ; 103(3): 2545-2555, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31928751

RESUMEN

Hyperketonemia is a metabolic disease in dairy cows, associated with negative nutrition balance (NNB) induced by low dry matter intake (DMI) and increased nutrient requirements. Hyperketonemia could induce metabolic stress, which might indirectly affect mammary tissue. Autophagy is a highly conserved physiological process that results in the turnover of intracellular material, and is involved in maintaining cellular homeostasis under the challenge of metabolic stress induced by NNB. The aim of this study was to investigate the autophagy status and autophagy-related pathways AMP-activated kinase α (AMPKα) and mechanistic target of rapamycin (mTOR) in the mammary glands of dairy cows with hyperketonemia. Cows with hyperketonemia [CWH, n = 10, blood ß-hydroxybutyrate (BHB) concentration 1.2 to 3.0 mmol/L] and cows without hyperketonemia (CWOH, n = 10, BHB < 1.2 mmol/L) from 3 to 12 DIM were randomly selected from the herd. The mammary tissue and blood samples were collected from these cows between 0630 and 0800 h, before feeding, at 3 to 12 d in milk. Serum concentrations of glucose, BHB, and fatty acids were determined using an autoanalyzer with commercial kits between 0630 and 0800 h, before feeding. Concentrations of fatty acids, BHB (median and interquartile range: CWH, 2.44 and 1.3, 2.82 mM; CWOH, 0.49 and 0.41, 0.57 mM), and milk fat were greater in CWH. The DMI, glucose concentration, milk production, and milk protein levels were lower in CWH. The mRNA abundance of autophagosome formation-related gene, beclin 1 (BECN1), phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), autophagy-related gene (ATG) 5, ATG7, ATG12, microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3) and sequestosome-1 (SQSTM1, also called p62) were greater in the mammary glands of CWH. The protein abundance of LC3-II and phosphorylation level of Unc-51-like kinase 1 (ULK1) were greater in CWH, but the total ubiquitinated proteins and protein abundance of p62 were lower. Transmission electron microscopy showed an increased number of autophagosomes in the mammary glands of CWH. Furthermore, the phosphorylation of AMPKα was greater, but the phosphorylation of mTOR was lower in the mammary glands of CWH. These results indicate that activity of mTOR pathways and autophagy activity, and upregulation of AMPKα, may be response mechanisms to mitigate metabolic stress induced by hyperketonemia in the mammary glands of dairy cows.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagosomas/metabolismo , Autofagia , Cetosis/veterinaria , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Beclina-1 , Bovinos , Femenino , Glucosa/metabolismo , Lactancia , Fosforilación , Distribución Aleatoria , Serina-Treonina Quinasas TOR/genética
7.
J Dent Res ; 99(2): 214-222, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31869264

RESUMEN

Collagen signaling is critical for proper bone and tooth formation. Discoidin domain receptor 2 (DDR2) is a collagen-activated tyrosine kinase receptor shown to be essential for skeletal development. Patients with loss of function mutations in DDR2 develop spondylo-meta-epiphyseal dysplasia (SMED), a rare, autosomal recessive disorder characterized by short stature, short limbs, and craniofacial anomalies. A similar phenotype was observed in Ddr2-deficient mice, which exhibit dwarfism and defective bone formation in the axial, appendicular, and cranial skeletons. However, it is not known if Ddr2 has a role in tooth formation. We first defined the expression pattern of Ddr2 during tooth formation using Ddr2-LacZ knock-in mice. Ddr2 expression was detected in the dental follicle/sac and dental papilla mesenchyme of developing teeth and in odontoblasts and the periodontal ligament (PDL) of adults. No LacZ staining was detected in wild-type littermates. This Ddr2 expression pattern suggests a potential role in the tooth and surrounding periodontium. To uncover the function of Ddr2, we used Ddr2slie/slie mice, which contain a spontaneous 150-kb deletion in the Ddr2 locus to produce an effective null. In comparison with wild-type littermates, Ddr2slie/slie mice displayed disproportional tooth size (decreased root/crown ratio), delayed tooth root development, widened PDL space, and interradicular alveolar bone defects. Ddr2slie/slie mice also had abnormal collagen content associated with upregulation of periostin levels within the PDL. The delayed root formation and periodontal abnormalities may be related to defects in RUNX2-dependent differentiation of odontoblasts and osteoblasts; RUNX2-S319-P was reduced in PDLs from Ddr2slie/slie mice, and deletion of Ddr2 in primary cell cultures from dental pulp and PDL inhibited differentiation of cells to odontoblasts or osteoblasts, respectively. Together, our studies demonstrate odontoblast- and PDL-specific expression of Ddr2 in mature and immature teeth, as well as indicate that DDR2 signaling is important for normal tooth formation and maintenance of the surrounding periodontium.


Asunto(s)
Receptor con Dominio Discoidina 2 , Odontogénesis , Animales , Receptor con Dominio Discoidina 2/genética , Receptores con Dominio Discoidina , Humanos , Ratones , Odontogénesis/genética , Proteínas Tirosina Quinasas Receptoras , Receptores Mitogénicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...