Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 103(1): e14422, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230772

RESUMEN

Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 µM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 µM compared to IC50 of 1.10 µM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Proliferación Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Receptores ErbB/metabolismo , Doxorrubicina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Simulación del Acoplamiento Molecular , Quinasa 2 Dependiente de la Ciclina/metabolismo
2.
RSC Med Chem ; 14(4): 734-744, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122549

RESUMEN

A new series of 5-substituted-3-ethylindole-2-carboxamides 5a-k and 6a-c was designed and synthesised in an attempt to develop a dual targeted antiproliferative agent. Various spectroscopic methods of analysis were used to confirm the structures of the new compounds. The antiproliferative effect of compounds 5a-k and 6a-c against four cancer cell lines was investigated. Compounds 5a-k and 6a-c had significant antiproliferative activity against the four cancer cell lines tested, with mean GI50 values ranging from 37 nM to 193 nM. The most powerful derivatives were compounds 5g, 5i, and 5j, with GI50 values of 55 nM, 49 nM, and 37 nM, respectively, in comparison to the reference erlotinib, which had a GI50 of 33 nM. The four most potent compounds, 5c, 5g, 5i, and 5j, were then investigated for their efficacy as EGFR inhibitors, and the findings showed that the tested compounds inhibited EGFR with IC50 values ranging from 85 nM to 124 nM when compared to the reference erlotinib (IC50 = 80 nM). Moreover, compounds 5c and 5g inhibited CDK2 with IC50 values of 46 ± 05 nM and 33 ± 04 nM, respectively. The EGFR and CDK2 assays revealed that compounds 5i and 5j displayed potent antiproliferative activity and can be considered as potential dual EGFR and CDK2 inhibitors.

3.
Bioorg Chem ; 120: 105616, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35078049

RESUMEN

Using a single drug to treat cancer with dual-targeting is an unusual approach when compared to other drug combinations. Dual-targeting agents were developed as a result of insufficient efficacy and drug resistance when single-targeting agents were used. As a result, the 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives 13-22 have been developed as dual EGFR and BRAFV600E inhibitors. The target compounds were synthesized and tested in vitro against four cancer cell lines, with compounds 15, and 19-22 demonstrating potent antiproliferative activity. In vitro studies revealed that these compounds have dual inhibitory effect on EGFR and BRAFV600E. Compounds 15, and 19-22 exhibited inhibitions of EGFR with IC50 ranging from 32 nM to 63 nM which were superior to erlotinib (IC50 = 80 ± 10 nM). Compounds 20, 21 and 22 showed promising inhibitory activity of BRAFV600E (IC50 = 55, 45 and 51 nM, respectively) and were found to be potent inhibitors of cancer cell proliferation (GI50 = 51, 35 and 44 nM, respectively). Compounds 20, 21 and 22 showed good antioxidant activity comparable to the reference Trolox. Lastly, the best active dual inhibitors were docked inside EGFR and BRAFV600E active sites to clarify their binding modes.


Asunto(s)
Antineoplásicos , Proteínas Proto-Oncogénicas B-raf , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Indoles/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Relación Estructura-Actividad
4.
Bioorg Chem ; 116: 105363, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555629

RESUMEN

We have discovered a family of synthetic oxazole-based macrocycles to be active against SARS-CoV-2. The synthesis, pharmacological properties, and docking studies of the compounds are reported in this study. The structure of the new macrocycles was confirmed by NMR spectroscopy and mass spectrometry. Compounds 13, 14, and 15a-c were evaluated for their anti-SARS-CoV-2 activity on SARS-COV-2 (NRC-03-nhCoV) virus in Vero-E6 cells. Isopropyl triester 13 and triacid 14 demonstrated superior inhibitory activities against SARS-CoV-2 compared to carboxamides 15a-c. MTT cytotoxicity assays showed that the CC50 (50% cytotoxicity concentration) of 13, 14, and 15a-c ranged from 159.1 to 741.8 µM and their safety indices ranged from 2.50 to 39.1. Study of the viral inhibition via different mechanisms of action (viral adsorption, replication, or virucidal property) showed that 14 had mild virucidal (60%) and inhibitory effects on virus adsorption (66%) at 20 µM concentrations. Compound 13 displayed several inhibitory effects at three levels, but the potency of its action is primarily virucidal. The inhibitory activity of compounds 13, 14, and 15a-c against the enzyme SARS-CoV-2 Mpro was evaluated. Isopropyl triester 13 had a significant inhibition activity against SARS-CoV-2 Mpro with an IC50 of 2.58 µM. Large substituents on the macrocyclic template significantly reduced the inhibitory effects of the compounds. Study of the docking of the compounds in the SARS CoV-2-Mpro active site showed that the most potent macrocycles 13 and 14 exhibited the best fit and highest affinity for the active site binding pocket. Taken together, the present study shows that the new macrocyclic compounds constitute a new family of SARS CoV-2-Mpro inhibitors that are worth being further optimized and developed.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas , Compuestos Macrocíclicos/farmacología , Oxazoles/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Proteasas 3C de Coronavirus/metabolismo , Humanos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Oxazoles/síntesis química , Oxazoles/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología
5.
Bioorg Chem ; 116: 105302, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34464816

RESUMEN

COX-2 selective drugs have been withdrawn from the market due to cardiovascular side effects, just a few years after their discovery. As a result, a new series of 1,5-diaryl pyrazole carboxamides 19-31 was synthesized as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxic properties. The target compounds were synthesized and tested in vitro against COX-1, COX-2, and sEH enzymes. Compounds 20, 22 and 29 exhibited the most substantial COX-2 inhibitory activity (IC50 values: 0.82-1.12 µM) and had SIs of 13, 18, and 16, respectively, (c.f. celecoxib; SI = 8). Moreover, compounds 20, 22, and 29 were the most potent dual COX-2/sEH inhibitors, with IC50 values of 0.95, 0.80, and 0.85 nM against sEH, respectively, and were more potent than the standard AUDA (IC50 = 1.2 nM). Furthermore, in vivo studies revealed that these compounds were the most active as analgesic/anti-inflammatory derivatives with a good cardioprotective profile against cardiac biomarkers and inflammatory cytokines. Finally, the most active dual inhibitors were docked inside COX-2/sEH active sites to explain their binding modes.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Cardiotónicos/farmacología , Inhibidores Enzimáticos/farmacología , Pirazoles/farmacología , Ácido Acético , Analgésicos/efectos adversos , Analgésicos/química , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/química , Conducta Animal/efectos de los fármacos , Cardiotónicos/efectos adversos , Cardiotónicos/química , Chondrus , Ciclooxigenasa 2/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/química , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazoles/efectos adversos , Pirazoles/química , Solubilidad , Relación Estructura-Actividad
6.
Bioorg Chem ; 112: 104960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34020242

RESUMEN

New EGFR inhibitor series of fifteen 5-chloro-3-hydroxymethyl-indole-2-carboxamide derivatives has been designed, synthesized, and tested for antiproliferative activity against a panel of cancer cell lines. The results showed that p-substituted phenethyl derivatives 10, 11, 13, 15 and 17-19 showed superior antiproliferative activity compared to their m-substituted counterparts 12, 14, 16 and 20. Compounds 15, 16, 19 and 20 displayed promising EGFR inhibitory activity as well as an increase in caspase 3 levels. Compounds 15 and 19 increased caspase-8 and 9 levels, as well as inducing Bax and decreasing Bcl-2 protein levels. Compound 19 demonstrated cell cycle arrest at pre-G1 and G2/M phases. The results of the docking study into the active site of EGFR revealed strong fitting of the new compounds with higher binding affinities compared to erlotinib.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA