Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10528, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719861

RESUMEN

The current study aimed to assess the effect of the germination process of wild mustard seeds on the phenolic profile, antioxidant, antibacterial, and antidiabetic properties, and some relevant enzyme activities. The total phenolic and flavonoid contents increased 5- and 10-fold, respectively, and were maximized on 5-days sprouts. One new phenolic compound was identified on 5-days sprout extract using HPLC. The concentrations of the identified phenolic compounds increased 1.5-4.3 folds on 5-days sprouts compared with dry seeds. The total antioxidant activity multiplied 17- and 21-fold on 5-days sprouts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, respectively. The activity of carbohydrate-cleaving, phenolic-synthesizing and antioxidant enzymes also increased during germination. On 5-days sprouts, there was a substantial correlation between the highest ß-glucosidase and peroxidase activities with highest phenolic and flavonoid levels and maximum antioxidant activity. The phenolic extract of 5-days sprouts exhibited antimicrobial activities against Escherichia coli and Staphylococcus aureus and showed potent antidiabetic activity established by its inhibitory effect against α-amylase and α-glucosidase compared to dry seeds.


Asunto(s)
Antioxidantes , Germinación , Planta de la Mostaza , Fenoles , Extractos Vegetales , Semillas , Fenoles/análisis , Fenoles/farmacología , Fenoles/química , Antioxidantes/farmacología , Antioxidantes/química , Germinación/efectos de los fármacos , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Planta de la Mostaza/química , Antibacterianos/farmacología , Antibacterianos/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Cromatografía Líquida de Alta Presión
2.
Sci Rep ; 14(1): 1362, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228654

RESUMEN

Chia gum's molecular structure with distinctive properties as well as the alginate-based hydrogel's three-dimensionally cross-linked structure can provide a potent matrix for immobilization of enzyme. Herein, chia gum (CG)/alginate (A)-polymeric complex was synthesized and employed as a support material for the immobilization of horseradish peroxidase (HRP). HRP was successfully immobilized on the developed ACG-polymeric support, and the highest immobilization recovery (75%) was observed at 1.0% CG and 2% A, pH 7.0, and 50 units of the enzyme. The structure, morphology, and thermal properties of the prepared ACG-HRP were demonstrated using Fourier Transform Infrared (FTIR), Scanning Electron Microscope, and Thermogravimetric (TGA) analyses. ACG-HRP showed a good reusability (60%) over ten reuses. The immobilized ACG-HRP displayed an acidic pH optimum (6.0), a higher temperature optimum (50 °C), and improved thermal stability (30-50 °C) compared to the soluble HRP at pH 7.0, 40 °C and (30-40 °C), respectively. ACG-HRP has a lower affinity for hydrogen peroxide (H2O2) and guaiacol and a higher oxidizing affinity for a number of phenolic substrates. The ACG-HRP demonstrated greater resistance to heavy metals, isopropanol, urea, Triton X-100, and urea, as well as improved efficiency for eliminating phenol and p-chlorophenol. The developed ACG-polymeric support provided improved enzyme properties, allowed the reuse of the immobilized HRP in 10 cycles, and made it promising for several biotechnological applications.


Asunto(s)
Enzimas Inmovilizadas , Polímeros , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , Temperatura , Peroxidasa de Rábano Silvestre/metabolismo , Peróxido de Hidrógeno , Fenol , Urea , Concentración de Iones de Hidrógeno
3.
Sci Rep ; 13(1): 16123, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752241

RESUMEN

Sarcocystis spp. infects water buffaloes (Bubalus bubalis) causing sarcocystosis. In the present study, Sarcocystis fusiformis was recognized in Egyptian water buffaloes based on histological observation and molecular analysis of internal transcribed spacer 1 (ITS1), 18S ribosomal RNA (18S rRNA) and cytochrome c oxidase subunit I (COX-1) gene fragments. Chemotherapy and vaccines against Sarcocystis spp. could potentially target proteases because they may play a crucial role in the infection. Cysteine proteases are multifunctional enzymes involved in vital metabolic processes. However, the involvement of proteases in S. fusiform infection has not yet been characterized. Here, the purification and study on some biochemical properties of protease isolated from cysts of S. fusiform were carried out. Protease with a molecular weight of 100 kDa was purified. LC-MS/MS analyzed the protein sequence of purified protease and the data suggested that the enzyme might be related to the cysteine protease. The purified protease exhibited maximum activity at pH 6 and a temperature of 50 °C. The Michaelis-Menten constant (Km), the maximum velocity (Vmax), and the turnover number (Kcat) were determined. The complete inhibition effect of cysteine inhibitors indicated that the purified enzyme is a cysteine protease. The results suggested that S. fusiform proteolytic enzyme may be necessary for parasite survival in water buffaloes by digesting host tissues. Therefore, cysteine protease could be a suitable target for vaccinations.


Asunto(s)
Proteasas de Cisteína , Sarcocystis , Animales , Sarcocystis/genética , Búfalos/genética , Proteasas de Cisteína/genética , Egipto , Cromatografía Liquida , Reacción en Cadena de la Polimerasa , Espectrometría de Masas en Tándem , Péptido Hidrolasas , Endopeptidasas
4.
Sci Rep ; 13(1): 15605, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731031

RESUMEN

On the global market, silver nanoparticles (Ag-NPs) are in high demand for their various applications in biomedicine, material engineering, and consumer products. This study highlighted the biosynthesis of the Ag-NPs using saw palmetto seed phenolic extract (SPS-phenolic extract), which contained vital antioxidant-phenolic compounds. Herein, central composite statistical design, response surface methodology, and sixteen runs were conducted to optimize Ag-NPs biosynthesis conditions for maximizing the production of Ag-NPs and their phenolic content. The best-produced SPS-Ag-NPs showed a surface plasmon resonance peak at 460 nm and nano-spherical sizes ranging from 11.17 to 38.32 nm using the UV spectrum analysis and TEM images, respectively. The produced SPS-Ag-NPs displayed a high negative zeta-potential value (- 32.8 mV) demonstrating their high stability. The FTIR analysis demonstrated that SPS-phenolic compounds were involved in sliver bio-reduction and in stabilizing, capping, and preventing Ag-NP aggregation. The thermogravimetric investigation revealed that the produced SPS-Ag-NPs have remarkable thermal stability. The produced SPS-Ag-NP exceeded total antioxidant activity (13.8 µmol Trolox equivalent) more than the SPS-phenolic extract (12.0 µmol Trolox equivalent). The biosynthesized SPS-Ag-NPs exhibited noticeably better antibacterial activity against multidrug-resistant Gram-negative E. coli and Gram-positive S. aureus compared to SPS-phenolic extract. Hence, the bio-synthesized SPS-Ag-NPs demonstrated great potential for use in biomedical and antimicrobial applications.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Antioxidantes/farmacología , Plata , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Fenoles , Semillas
5.
Sci Rep ; 13(1): 10445, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369768

RESUMEN

Based on garden cress significantly used for phytoremediation, the antioxidant system included antioxidant-phenolic compounds and antioxidant-enzymes of 6-day-garden cress sprouts (GCS) were assessed as potential bio-indicators for cadmium (Cd) and lead (Pb) contamination. Total phenolic and flavonoid contents of GCS germinated under Cd and Pb treatments (25-150 mg kg-1) gradually increased with increasing concentration of metals and peaked by 2.0, 2.6, and 2.5, 2.3 folds at 150 mg kg-1, respectively. By using DPPH, ABTS, and PMC antioxidant assays, the total antioxidant activity of phenolic compounds of GCS increased 6.1, 13.0, and 5.8-fold for Cd and 5.9, 14.6, and 8.2-fold for Pb at 150 mg kg-1, respectively. The antioxidant enzymes of GCS (POD, CAT, GR, and GST) were significantly activated in response to Cd and Pb stress, and two new electrophoretic POD bands were detected. GCS was absorbed 19.0% and 21.3% of Cd and Pb at 150 mg metal kg-1, respectively. In conclusion, the approaches of the antioxidant defense system of GSC could potentially be used as bio-indicator for monitoring Cd and Pb contamination in a short time of germination process.


Asunto(s)
Cadmio , Contaminantes del Suelo , Antioxidantes , Lepidium sativum , Plomo
6.
Food Sci Biotechnol ; 32(1): 47-58, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36606085

RESUMEN

The obtained garden cress 6-day sprouts phenolic-rich extract (GCSP) contained efficient health-promoting antioxidant-phenolic compounds. To improve the stability, bioavailability, and functional properties of these valuable phenolic compounds, GCSP was encapsulated by freeze-drying technique using different ratios of garden cress gum (GG) and maltodextrin (M) in the absence and presence of sonication (S). The prepared S/GG-microcapsule retained the highest phenolic content (95%), antioxidant activity (141.6%), and encapsulation efficiency (98.2%). It displayed the highest bio-accessibility of GCSP-phenolic compounds in simulated intestine fluid (87%) and demonstrated the greatest storage-stability at 40 °C for 60 days. S/GG-microcapsule possessed better physical properties including moisture, solubility, swelling, and morphological structures using SEM. The main spectral features, crosslinking, and improved thermal stability were demonstrated for S/GG-microcapsule using FTIR and thermogravimetric analyses. S/GG-microcapsule demonstrated much greater antibacterial activity than GCSP against pathogenic bacteria. S/GG-microcapsule can be added to different food products to improve their antioxidant and antibacterial properties.

7.
Folia Microbiol (Praha) ; 67(2): 253-264, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34743285

RESUMEN

Production of amylases by fungi under solid-state fermentation is considered the best methodology for commercial scaling that addresses the ever-escalating needs of the worldwide enzyme market. Here response surface methodology (RSM) was used for the optimization of process variables for α-amylase enzyme production from Trichoderma virens using watermelon rinds (WMR) under solid-state fermentation (SSF). The statistical model included four variables, each detected at two levels, followed by model development with partial purification and characterization of α-amylase. The partially purified α-amylase was characterized with regard to optimum pH, temperature, kinetic constant, and substrate specificity. The results indicated that both pH and moisture content had a significant effect (P < 0.05) on α-amylase production (880 U/g) under optimized process conditions at a 3-day incubation time, moisture content of 50%, 30 °C, and pH 6.98. Statistical optimization using RSM showed R2 values of 0.9934, demonstrating the validity of the model. Five α-amylases were separated by using DEAE-Sepharose and characterized with a wide range of optimized pH values (pH 4.5-9.0), temperature optima (40-60 °C), low Km values (2.27-3.3 mg/mL), and high substrate specificity toward large substrates. In conclusion, this study presents an efficient and green approach for utilization of agro-waste for production of the valuable α-amylase enzyme using RSM under SSF. RSM was particularly beneficial for the optimization and analysis of the effective process parameters.


Asunto(s)
Citrullus , Hypocrea , Amilasas , Citrullus/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Hypocrea/metabolismo , Microbiología Industrial/métodos , Temperatura , alfa-Amilasas/química , alfa-Amilasas/metabolismo
8.
J Microencapsul ; 39(1): 72-94, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34958628

RESUMEN

Nanotechnology is currently a field of endeavour that has reached a maturation phase beyond the initial hypotheses with an undercurrent challenge to optimise the safety, and scalability for production and clinical trials. Lipid-based nanoparticles (LNP), namely solid lipid nanoparticles (SLN) and nanostructured lipid (NLC), carriers are presently among the most attractive and fast-growing areas of research. SLN and NLC are safe, biocompatible nanotechnology-enabled platforms with ubiquitous applications. This review presents a modern vision that starts with a brief description of characteristics, preparation strategies, and composition ingredients, benefits, and limitations. Next, a discussion of applications and functionalization approaches for the delivery of therapeutics via different routes of delivery. Additionally, the review presents a concise perspective into limitations and future advances. A brief recap on the prospects of molecular dynamics simulations in better understanding NP bio-interface interactions is provided. Finally, the alliance between 3D printing and nanomaterials is presented here as well.


Asunto(s)
Nanopartículas , Nanoestructuras , Portadores de Fármacos , Lípidos , Liposomas
9.
Food Sci Biotechnol ; 30(5): 723-734, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34123468

RESUMEN

Little studies on chia sprouts were not deeply address the polyphenols profiles and their functional properties during long period of germination. This study aims to evaluate the impact of germination process on the phenolic profile, antioxidant and antibacterial properties and relevant enzymes activities of Egyptian chia seeds. The total phenolic and flavonoid contents of chia sprouts increased several times during ten days of germination and maximized on 7-day sprouts (6.4 and 11.5 folds, respectively). In HPLC analysis, seventeen phenolic compounds were detected on 7-day sprouts compared to fifteen in dry seeds, where two new phenolic compounds (p-coumaric acid and kaempferol) were detected. The concentrations of all the identified phenolic compounds increased several folds (1.8-27) on 7-day sprouts. The total antioxidant activity increased 10, 17, and 29 folds on 7-day sprouts using DPPH, ABTS and PMC antioxidant methods, respectively compared to the dry seeds. Both antioxidant and carbohydrate-cleaving enzymes increased in chia sprouts and correlated with their phenolic content and antioxidant activity. The phenolic content of 7-day sprouts showed a potent antibacterial activity against some human enteric pathogenic bacteria including Escherichia coli O157-H7, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus with lower MIC values compared to the raw seeds.

10.
Int J Biol Macromol ; 181: 734-742, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33811934

RESUMEN

In the present study, two different modified starches; microporous starch (MPS) and cationic microporous starch (CMPS) were synthesized. The granules of MPS that distributed regularly were destroyed after the etherification reaction. The data depicted that the immobilization of horseradish peroxidase (HRP) on CMPS revealed highest immobilization efficiency (86%) at 100 mg of CMPS at pH = 6.0 and 100 units of enzyme. After 10 reuses of the CMPS-HRP, it retained 66% of initial activity. The soluble HRP showed broad pH optimum of 6.0-7.0, which changed to sharp pH = 6.0 for CMPS-HRP. Soluble-HRP and CMPS-HRP showed temperature optima at 30 °C and 40 °C, respectively. The CMPS-HRP showed high thermal stability up to 50 °C compared to the soluble HRP (40 °C). The Km values of soluble HRP and CMPS-HRP were 6.6 and 10.8 mM for H2O2 and 34 and 41.6 mM for guaiacol, respectively. CMPS-HRP showed higher affinity toward various substrates than the soluble-HRP. CMPS-HRP showed more resistance against heavy metals, urea, isopropanol, Triton X-100 and trypsin than soluble enzyme. The CMPS-HRP showed higher ability to remove phenol and p-chlorophenol compared to soluble-HRP.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Fenol/aislamiento & purificación , Almidón/química , Rastreo Diferencial de Calorimetría , Cationes , Concentración de Iones de Hidrógeno , Cinética , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/ultraestructura , Especificidad por Sustrato , Temperatura , Termogravimetría , Factores de Tiempo , Tripsina/metabolismo , Difracción de Rayos X
11.
J Food Biochem ; 45(1): e13526, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33140461

RESUMEN

The study aims to evaluate the relation between peroxidases of day-6 garden cress sprouts and phenolic compounds. Three cationic, three anionic, and two unbounded peroxidases were separated from day-6 garden cress sprouts. Cationic (GCP1) and anionic (GCP2) peroxidases were purified with molecular masses of 25 and 40 kDa, respectively. The Km values of GCP1 toward H2 O2 and guaiacol were lower than GCP2. The anionic GCP2 exhibited high affinity toward some lignin monomers, sinapyl alcohol, coniferyl alcohol, cinnamic and ferulic acids. Therefore, GCP2 is considered as a lignin peroxidase and contributed in lignin synthesis. The activity of GCP1 and GCP2 was stable at a wide pH range 5.5-8.0 and 6.0-7.5, respectively. Both peroxidases showed the same thermal stability range 20-50°C. GCP2 was more resistant against the effect of metal ions than GCP1. GCP2 showed high ability to remove of phenol and p-chlorophenol from effluent compared to GCP1. PRACTICAL APPLICATIONS: Generally, garden cress is used as a test plant to conduct biomonitoring of pollution in urban soil on a wide scale because of its simplicity, sensitivity, and cost-effectiveness. Peroxidase is an important antioxidant enzyme, which elevated when plant subjected to pollution. Recently, we reported that the increase of peroxidase activity was strongly correlated with high phenolic content and antioxidant activity during the germination of garden cress. In the present study, anionic peroxidase GCP2 may play an important role in lignification process and removal of phenol and p-chlorophenol from polluted soil/wastewater as well as resisted the harmful effect of heavy metals. Cationic peroxidase GCP1, as a natural scavenger, had high affinity toward H2 O2 coupled to oxidation of some plant phenolic compounds suggesting its role in consuming of excess H2 O2 .


Asunto(s)
Lepidium sativum , Fenol , Clorofenoles , Peroxidasas , Fenoles
12.
J Food Biochem ; 44(11): e13416, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32885876

RESUMEN

Recently, we reported that the date palm seed (DP) and saw palmetto seed (SP) extracts possessed a great amount of phenolic contents with potent antioxidant, antimicrobial, and anti-inflammatory activities. Therefore, this study aimed to assess the role of DP and SP phenolic-rich extracts in modulating diabetic complications and oxidative stress in the STZ- diabetic rat. DP and SP extracts significantly inhibited both microbial and pancreatic α-amylases. The STZ-induced diabetic rat groups treated with DP and SP extracts exhibited reversed hyperglycemia (40% and 54%, p < .001-.01) and body weight (70%, p < .001) alteration close to normal. Moreover, DP and SP extracts modulated serious damages in the structures of the pancreas, kidney, and liver of diabetic rats. DP and SP extracts improved the decline of the activities of antioxidant enzymes: Catalase, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase in liver, kidney, and pancreas of the diabetic rats. PRACTICAL APPLICATIONS: Generally, date seed is a rich source of dietary fibers, polyphenols, and antioxidants and used in foods and pharmaceuticals. Our study reported that date palm seed (DP) and saw palmetto seed (SP) phenolic-rich extracts attenuated diabetes and its complications, probably tissue regeneration and normalizing the oxidative stress in the STZ-induced diabetic rat.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Experimental , Phoeniceae , Extractos Vegetales , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Estrés Oxidativo , Extractos Vegetales/farmacología , Ratas , Semillas , Serenoa
13.
Int J Biol Macromol ; 148: 401-414, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31945446

RESUMEN

A novel built-in approach for the in situ formed hemicyanine dyes in the chitosan matrix is presented. Chitosan was reacted with salicylaldehyde to afford the corresponding Schiff base in good yield. This derivative was then converted to two heterocyclic quaternary ammonium salts, namely chitosan benzothiazolium and chitosan picolinium salts, which upon reaction with p-dimethylaminobenzaldehyde by Knoevenagel condensation, the corresponding built-in hemicyanine dyes were obtained. Characterization was made by NMR, FTIR, SEM, and UV-visible. The two dyed samples (benzothiazolium and picolinium) were used for the purification of chewing stick peroxidase by affinity chromatography method. 1.0 M ammonium sulfate was used as eluent to check whether the purification of enzyme proceeds by hydrophobic interactions and the result indicated that the purification proceeds by rather ionic interactions, and therefore 1 M NaCl was used instead. The overall result indicates that benzothiazolum column showed better affinity with a high specific activity of the separated enzymes compared with those obtained with the picolinium column. This novel dye ligand built-in approach onto a biopolymeric substrate is promising and would pave the way for more future work ahead in the field of the purification of proteins and other biological macromolecules.


Asunto(s)
Carbocianinas/química , Quitosano/química , Colorantes/química , Peroxidasa/química , Peroxidasas/química , Adsorción , Aldehídos/química , Sulfato de Amonio/química , Cromatografía de Afinidad/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Indicadores y Reactivos/química , Iones/química , Ligandos , Bases de Schiff/química
14.
Sci Rep ; 9(1): 12672, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481731

RESUMEN

In this study, amidrazone acrylic fabric was applied as an immobilising support for α-amylase. The immobilised α-amylase was characterised by Fourier transform infrared spectroscopy and scanning electron microscopy. Furthermore, the optimum conditions for immobilisation efficiency, immobilisation time, reusability, kinetic parameters and pH, for the immobilisation process were examined. The study demonstrated that with 4% cyanuric chloride, and a pH of 7.0, the highest immobilization efficiency of 81% was obtained. Around 65% of the initial activity was maintained after storage at 4 °C for 8 weeks. The immobilised enzyme retained 53% of its original activity after being reused 15 times and exhibited improved stability compared with the free enzyme in relation to heavy metal ions, pH, temperature and inhibitors. The immobilised enzyme presented kinetic parameters of 2.6 mg starch and 0.65 µmol maltose/mL for Km and Vmax respectively, compared with 3.7 mg starch and 0.83 µmol maltose/ mL for the free enzyme. The improvements in the enzyme's catalytic properties, stability and reusability obtained from immobilisation make amidrazone acrylic fabric support a good promising candidate for bio-industrial applications.


Asunto(s)
Proteínas Bacterianas/metabolismo , alfa-Amilasas/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Biocatálisis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Maltosa/metabolismo , Metales Pesados/química , Almidón/metabolismo , Temperatura , Triazinas/metabolismo , alfa-Amilasas/química
15.
Int J Biol Macromol ; 140: 949-958, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31445147

RESUMEN

In this study, hydrazine treated acrylic fabrics (polyacrylonitrile, PAN) activated with cyanuric chloride was developed as supporting material for horseradish peroxidase (HRP) immobilization. The immobilization of HRP onto the modified supporting material was achieved after being end-over-end incubated for 12 h. Field emission scanning electron microscopy and Fourier-transform infrared spectroscopy techniques were used to confirm the successful immobilization. Reusability experiment was performed to estimate the ability of the immobilized HRP to recover the reaction medium, in which it was observed to retain 78% of its original activity after 10 cycles. Relative to the soluble HRP, the optimum pH and temperature for the immobilized HRP were shifted to 7-7.5 and 50 °C, respectively. The kinetic parameters of guaiacol and H2O2 for the immobilized HRP were determined to be Km/Vmax = 57.61, 11.35 and Kcat/Km = 1.87, 1.86, respectively, while the values for the free form were Km/Vmax = 41.49, 6.23 and Kcat/Km = 1.87, 1.86, respectively. Compared to the soluble form, the immobilized HRP exhibited higher resistance toward metal ions and some organic solvents. For an application perspective. The immobilization of HRP using this procedure has the potential to be used for industrial application and wastewater treatment.


Asunto(s)
Resinas Acrílicas/química , Enzimas Inmovilizadas/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Fenol/aislamiento & purificación , Triazinas/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Hidrazinas/química , Hidrazinas/farmacología , Concentración de Iones de Hidrógeno , Cinética , Metales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Especificidad por Sustrato/efectos de los fármacos , Temperatura , Factores de Tiempo , Triazinas/química
16.
PLoS One ; 14(4): e0214521, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30933991

RESUMEN

Staphylococcus aureus is a Gram-positive bacterial pathogen of global concern and a leading cause of bacterial infections worldwide. Asymptomatic carriage of S. aureus on the skin and in the anterior nares is common and recognized as a predisposing factor to invasive infection. Transition of S. aureus from the carriage state to that of invasive infection is often accompanied by a temperature upshift from approximately 33°C to 37°C. Such a temperature shift is known in other pathogens to influence gene expression, often resulting in increased production of factors that promote survival or virulence within the host. One mechanism by which bacteria modulate gene expression in response to temperature is by the regulatory activity of RNA-based thermosensors, cis-acting riboregulators that control translation efficiency. This study was designed to identify and characterize RNA-based thermosensors in S. aureus. Initially predicted by in silico analyses of the S. aureus USA300 genome, reporter-based gene expression analyses and site-specific mutagenesis were performed to demonstrate the presence of a functional thermosensor within the 5' UTR of cidA, a gene implicated in biofilm formation and survival of the pathogen. The nucleic sequence composing the identified thermosensor are sufficient to confer temperature-dependent post-transcriptional regulation, and activity is predictably altered by the introduction of site-specific mutations designed to stabilize or destabilize the structure within the identified thermosensor. The identified regulator is functional in both the native bacterial host S. aureus and in the distally related species Escherichia coli, suggesting that its regulatory activity is independent of host-specific factors. Interestingly, unlike the majority of bacterial RNA-based thermosensors characterized to date, the cidA thermosensor facilitates increased target gene expression at lower temperatures. In addition to the characterization of the first RNA-based thermosensor in the significant pathogen S. aureus, it highlights the diversity of function within this important class of ribo-regulators.


Asunto(s)
Regiones no Traducidas 5' , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ARN Bacteriano/genética , Staphylococcus aureus/genética , Temperatura , Biopelículas , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Genoma Bacteriano , Humanos , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , ARN/análisis , Procesamiento Postranscripcional del ARN , Infecciones Estafilocócicas/microbiología , Virulencia , Factores de Virulencia/genética
17.
Int J Biol Macromol ; 130: 695-704, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30826405

RESUMEN

A hemorrhagic metalloprotease (CVHT1) was isolated from Cerastes vipera (CV) viper venom and characterized in a set of biochemical and immunological assays. A simple two-step purification procedure included gel filtration and ion-exchange increase the purity of enzyme 39-fold with specific activity of 20,200 Umg-1 compared to 520 Umg-1 for crude venom. CVHT1 is a dimer enzyme with two subunits of ~60 kDa. The LC-MS/MS analysis of CVHT1 revealed that the identified peptides show high homology to other P-III snake venom zinc-metalloproteases. The activity of CVHT1 showed stability at pH (6.5-8.5) and temperature (30-60 °C) with optima at pH 8.5 and 60 °C. Activators for CVHT1 included Mg+2, Zn+2, Ca+2, K+, Ba+2 and Na+, while the full inhibition was given by other tested ions, SH-group reagents and metalloproteinase inhibitors. The CVHT1 potentially digested gelatin, fibrinogen, fibronectin and inhibited the platelet aggregation. The hemorrhagic and proteolytic activities of medically important Egyptian viper venoms were highly cross-neutralized by anti-CVHT1. The anti-CVHT1 increased the survival time of mice injected with lethal dose of CV venom to 23 ±â€¯2.5 h compared to the mice injected with venom alone 0.52 ±â€¯0. 05 h. This study could be useful for production of safer and more efficient therapeutic anti-venom.


Asunto(s)
Metaloendopeptidasas/química , Venenos de Víboras/enzimología , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Activación Enzimática/efectos de los fármacos , Masculino , Metaloendopeptidasas/inmunología , Metaloendopeptidasas/aislamiento & purificación , Metales/química , Ratones , Peso Molecular , Pruebas de Neutralización , Agregación Plaquetaria/inmunología , Proteolisis , Conejos , Análisis Espectral , Espectrometría de Masas en Tándem , Venenos de Víboras/inmunología , Viperidae
18.
Environ Technol ; 40(21): 2813-2824, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29671382

RESUMEN

Pathogens, such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), contaminate water resources and are the main causes of diseases, not just waterborne diseases. The present study aims to fabricate hybrid materials composed of polyaniline (PANI), graphene nanosheets (GNs), and carbon nanotubes (CNTs) and utilize the materials for water disinfection. Thus, a new class of hybrid nanocomposites (PANI/GN/CNTsa-e) was fabricated under ultrasonic conditions following a well-known in situ oxidative polymerization technique in an aqueous acidic solution. A homogeneous mixture of GNs and CNTs (40/60 weight %) prepared at 2, 5, 10, 20 and 30% fixed ratios of GNs/CNTs was utilized in the fabrication of the nanocomposites. The structure of this new hybrid class of materials was confirmed by various characterization techniques that were utilized to corroborate their assembly. Column removal studies with bacteria indicated that the removal percentages of S. aureus and E. coli were 99.5 and 99.2%, respectively, using PANI/GN/CNTse. The bacterial count is an indication of bacterial removal after and before adsorption. Additionally, the data indicated clear synergic effects among the nanocomposites. Reuse studies revealed that the same percentage of adsorption was obtained for four cycles, which shows the PANI/GN/CNTse nanocomposites can be reused and recycled for a number of cycles with almost the same bacterial adsorption capability.


Asunto(s)
Grafito , Nanocompuestos , Nanotubos de Carbono , Compuestos de Anilina , Desinfección , Escherichia coli , Staphylococcus aureus , Agua
19.
Vet World ; 11(10): 1364-1370, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30532487

RESUMEN

AIM: In view of various peroxidase applications, the searching for new sources of unique peroxidase properties is highly desirable. The present study aims to evaluate the efficiency of the peroxidase of locally grown sycamore latex (POL) for conjugation with antibodies and to study the conjugate optimal conditions, storage stability, and affinity toward different substrates as compared with commercial horseradish peroxidase (HRP). MATERIALS AND METHODS: Anti-mouse antibodies were prepared in rabbits and purified by protein A sepharose affinity column chromatography. The POL and HRP conjugates were prepared by one-step glutaraldehyde coupling method. The reactivity of the prepared conjugates was examined using the enzyme-linked immunosorbent assay (ELISA). The optimal enzymatic conditions, storage stability, and affinity toward substrates were also determined for both the conjugates. RESULTS: The POL showed higher percent recovery (98%) than HRP (78%) over the initial activity after conjugation process. The POL and HRP conjugates showed ELISA titers of 1:120 and 1:80, respectively, demonstrating high binding affinity of POL-conjugate. The POL-conjugate showed high thermal stability up to 70°C compared with HRP-conjugate up to 40°C. After conjugation, POL had wide pH stability (5.0-8.0) compared with HPR (4.5-6.0). Both of the prepared conjugates had a high affinity toward the substrates used in immunoassays with lower Km values. The POL-conjugate showed high storage stability for its enzymatic activity and ELISA titer compared with HRP-conjugate after 1 year at -20°C. CONCLUSION: The POL of Ficus sycomorus latex is an efficient source for labeling antibodies and could be utilized in immunodiagnostic kits.

20.
Artif Cells Nanomed Biotechnol ; 46(sup3): S973-S981, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30314411

RESUMEN

In the present study, nanodiamond (ND) was blended with polymethyl methacrylate (PMMA) and then electrospun into nanofibers (nfPMMA-ND) for the immobilization of horseradish peroxidase (HRP). The maximum immobilization efficiency of HRP (96%) was detected at 10% ND and pH 7.0. ATR-FTIR, SEM and TEM were used to characterize the immobilized enzyme. The immobilized enzyme retained 60% of its initial activity after ten reuses. The pH was shifted from 7.0 for soluble HRP to 7.5 for the immobilized enzyme. The soluble HRP had an optimum temperature of 30 °C, whereas this temperature was shifted to 40 °C for the immobilized enzyme. The substrate analogs were oxidized by immobilized HRP with higher efficiencies than those of soluble HRP. The kinetic results showed that the soluble HRP had more affinity toward guiacol and H2O2 than immobilized HRP. The effect of metal ions on soluble and immobilized HRP was studied. The immobilized HRP was markedly more stable when it exposed to urea, isopropanol, butanol and heptane compared with the soluble enzyme. The immobilized HRP exhibited high resistance to proteolysis by trypsin than that of soluble enzyme. In conclusion, the nfPMMA-ND-HRP could be employed in several applications such as biosensor, biomedical and bioremediation.


Asunto(s)
Enzimas Inmovilizadas/química , Peróxido de Hidrógeno/química , Nanodiamantes/química , Nanofibras/química , Polimetil Metacrilato/química , Estabilidad de Enzimas , Peroxidasa de Rábano Silvestre/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...