Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L651-L659, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38529552

RESUMEN

Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.


Asunto(s)
Asma , Broncoconstricción , Regulación hacia Abajo , Miocitos del Músculo Liso , Proteína Fosfatasa 2 , Asma/metabolismo , Asma/patología , Humanos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Animales , Ratones , Regulación hacia Abajo/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Broncoconstricción/efectos de los fármacos , Músculo Liso/metabolismo , Músculo Liso/patología , Músculo Liso/efectos de los fármacos , Masculino , Bronquios/patología , Bronquios/metabolismo , Bronquios/efectos de los fármacos , Calcio/metabolismo , Femenino , Ratones Endogámicos C57BL
2.
Am J Respir Cell Mol Biol ; 70(6): 507-518, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512807

RESUMEN

Airway remodeling is a cardinal feature of asthma, associated with increased airway smooth muscle (ASM) cell mass and upregulation of extracellular matrix deposition. Exaggerated ASM cell migration contributes to excessive ASM mass. Previously, we demonstrated the alleviating role of Kp (kisspeptin) receptor (KISS1R) activation by Kp-10 in mitogen (PDGF [platelet-derived growth factor])-induced human ASM cell proliferation in vitro and airway remodeling in vivo in a mouse model of asthma. Here, we examined the mechanisms by which KISS1R activation regulates mitogen-induced ASM cell migration. KISS1R activation using Kp-10 significantly inhibited PDGF-induced ASM cell migration, further confirmed using KISS1R shRNA. Furthermore, KISS1R activation modulated F/G actin dynamics and the expression of promigration proteins like CDC42 (cell division control protein 42) and cofilin. Mechanistically, we observed reduced ASM RhoA-GTPAse with KISS1R activation. The antimigratory effect of KISS1R was abolished by PKA (protein kinase A)-inhibitory peptide. Conversely, KISS1R activation significantly increased cAMP and phosphorylation of CREB (cAMP-response element binding protein) in PDGF-exposed ASM cells. Overall, these results highlight the alleviating properties of Kp-10 in the context of airway remodeling.


Asunto(s)
Movimiento Celular , Kisspeptinas , Miocitos del Músculo Liso , Factor de Crecimiento Derivado de Plaquetas , Receptores de Kisspeptina-1 , Transducción de Señal , Proteína de Unión al GTP rhoA , Humanos , Movimiento Celular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Kisspeptinas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proteína de Unión al GTP rhoA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Cultivadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Proliferación Celular
3.
Solid State Nucl Magn Reson ; 129: 101914, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154437

RESUMEN

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is a powerful technique for characterizing the local structure and dynamics of battery and other materials. It has been widely used to investigate bulk electrode compounds, electrolytes, and interfaces. Beside common ex situ investigations, in situ and operando techniques have gained considerable importance for understanding the reaction mechanisms and cell degradation of electrochemical cells. Herein, we present the recent development of in situ magic angle spinning (MAS) NMR methodologies to study batteries with high spectral resolution, setting into context possible advances on this topic. A mini cylindrical cell type insert for 4 mm MAS rotors is introduced here, being demonstrated on a Li/VO2F electrochemical system, allowing the acquisition of high-resolution 7Li MAS NMR spectra, spinning the electrochemical cell up to 15 kHz.

4.
Biochimie ; 214(Pt B): 114-122, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37364770

RESUMEN

Hepatic steatosis is an important mstetabolic complication in women encountering postmenopausal phase of life. Pancreastatin (PST), has previously been investigated in diabetic and insulin resistant rodents. The present study highlighted the role of PST in ovariectomized rats. Female SD rats were ovariectomized and subsequently fed high fructose diet for 12 weeks. PST inhibitor peptide was intraperitoneally administered for 14 days and further examined for insulin resistance, glucose intolerance development, body mass composition, lipid profile detection and hepatic fibrosis. Gut microbial alterations has also been investigated. Results showed development of glucose intolerance in high fructose fed ovariectomized rats with reduced level of reproductive hormones including estradiol and progesterone. Enhanced lipid production was detected in these rats as they showed increased triglycerides, lipid accumulation in liver tissue (determined by HE staining, Oil Red O staining, Nile Red staining). Sirius Red and Masson's trichome analysis depicted positive results for fibrosis development. We also found gut microbiota alterations in fecal samples of these rats. Furthermore, PST inhibition decreased the expression of hepatic Fetuin B and resumed gut microbial diversity. PST deregulates hepatic lipid metabolism which leads to altered expression of Fetuin B in liver and gut dysbiosis in postmenopausal rats.


Asunto(s)
Intolerancia a la Glucosa , Metabolismo de los Lípidos , Animales , Femenino , Humanos , Ratas , Dieta Alta en Grasa , Fetuína-B/metabolismo , Fructosa/metabolismo , Lípidos , Hígado/metabolismo , Ratas Sprague-Dawley
5.
Curr Opin Lipidol ; 34(4): 147-155, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171285

RESUMEN

PURPOSE OF REVIEW: LDL in its oxidized form, or 'oxLDL', is now generally acknowledged to be highly proatherogenic and to play a significant role in atherosclerotic plaque formation. Therefore, there has been increasing interest in understanding the significance of oxLDL and its receptors in different phases of atherosclerosis, leading to the accumulation of additional data at the cellular, structural, and physiological levels. This review focuses on the most recent discoveries about these receptors and how they influence lipid absorption, metabolism, and inflammation in various cell types. RECENT FINDINGS: Two crystal structures of lectin-like oxLDL receptor-1 (LOX-1), one with a small molecule inhibitor and the other with a monoclonal antibody have been published. We recently demonstrated that the 'surface site' of LOX1, adjacent to the positively charged 'basic spine region' that facilitates oxLDL binding, is a targetable site for drug development. Further, recent human studies showed that soluble LOX-1 holds potential as a biomarker for cardiovascular disease diagnosis, prognosis, and assessing the efficacy of therapy. SUMMARY: Receptor-mediated oxLDL uptake results in cellular dysfunction of various cell types involved in atherogenesis and plaque development. The current advancements clearly demonstrate that targeting oxLDL-LOX-1 axis may lead to development of future therapeutics for the treatment of atherosclerotic cardiovascular and cerebrovascular diseases.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Receptores de LDL Oxidadas , Receptores Depuradores de Clase E/metabolismo , Aterosclerosis/metabolismo , Lipoproteínas LDL/metabolismo , Inflamación , Receptores de LDL
6.
Toxicology ; 483: 153373, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370889

RESUMEN

Recent studies have focused on exploring the efficacy of Cissus quadrangularis extract (EECQ) against various metabolic disorders involving the liver as the prime target organ, suggesting a considerable threat of hepatotoxicity in the person encountering it. Consequently, the current study was aimed to unravel the mutagenic, cytotoxic, mitochondrial dysfunction, apoptotic activity in HepG2 cells, and acute toxicity of EECQ. MTT, SRB, trypan blue dye exclusion, and lactate dehydrogenase (LDH) assay were performed in HepG2 cell lines to determine the cytotoxicity of the extract. The mutagenic potential was determined by the Ames test using various strains of Salmonella typhimurium. Acute toxicity was done at a dose of 2000 mg/kg in Sprague Dawley rats. MTT and SRB cytotoxicity assays demonstrated dose-dependent cytotoxicity of extract. The three highest noncytotoxic doses from the above assay, investigated by trypan blue dye exclusion and LDH assay, did not reveal cytotoxicity. Besides, mitochondrial dysfunction was determined by measuring cellular and mitochondrial ROS, ATP, NAD, mitochondrial membrane potential, Bax/Bcl2 ratio, mitochondrial and cytoplasmic cytochrome c, and apoptosis-inducing factor, were found to be equivalent in both extract exposed and unexposed cells. Moreover, the apoptotic cell morphology and the expression of pro-apoptotic mRNAs and proteins were equivalent in both the group. In acute toxicity, EECQ in rats did not cause any significant change in body weight, liver index, and liver function test. All-encompassing, the present study unraveled that EECQ is not mutagenic, cytotoxic, nor apoptotic in human hepatic cells, as well as neither acute toxicity.


Asunto(s)
Cissus , Ratas , Humanos , Animales , Mutágenos , Azul de Tripano/farmacología , Extractos Vegetales/toxicidad , Ratas Sprague-Dawley , Etanol , Mitocondrias
7.
Exp Gerontol ; 172: 112064, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36528304

RESUMEN

Hesperidin possesses myriads of pharmacological benefits, including anti-inflammatory and antioxidant properties. Herein, we speculated that the described pharmacological benefits of hesperidin might be due to its potentiating action on SIRT1; thereby, inhibition of NOX4. We developed diabetic neuropathy in Sprague-Dawley rats by feeding them a high-fat diet (HFD) for 12 weeks. We checked the effect of hesperidin on the level of oxidative stress, inflammatory markers, NOX4, and SIRT1 by biochemical analysis, histopathology, immunoblotting, immunocytochemistry, and real-time qPCR in HFD-fed rats and Palmitate encountered rat glial C6 cells. Hesperidin administration improved mechanical, thermal allodynia, and glucose homeostasis. There was a decrease in oxidative stress and inflammation and an enhanced level of antioxidant enzymes. Besides, the expression of NOX4 was down-regulated, while SIRT1 was upregulated. Interestingly, hesperidin treatment protected them from oxidative and inflammatory damage by upregulating SIRT1 and inhibiting NOX4 expression.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Hesperidina , Ratas , Animales , Antioxidantes/metabolismo , Hesperidina/farmacología , Sirtuina 1/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Ratas Sprague-Dawley , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , NADPH Oxidasa 4/genética
8.
Biomarkers ; 27(8): 743-752, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35896310

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is an age-related disease, and its progression is accompanied by hyperglycaemia, cardiac dysfunction, and myocardial structural and functional abnormalities. Cissus quadrangularis, a traditional medicinal plant, contains polyphenols, flavonoids, phytosterols, carbohydrates and ascorbic acid. It is used to treat osteoporosis, asthma, haemorrhoids and menstrual disorders.Objective: In the current research, we have investigated the effect of ethanolic extract of C. quadrangularis (EECQ) against a high-fat diet (HFD)/streptozotocin-induced DCM by estimating cardiac biomarkers, inflammatory markers and Reactive oxygen species (ROS) production. MATERIAL AND METHODS: Rats were fed with an HFD for 12 weeks, followed by single-shot low-dose streptozotocin (35 mg/kg; i.p.). The treatment was performed by EECQ (200 mg/kg/day, orally) for six weeks. RESULTS: The extract EECQ improves glucose, insulin tolerance tests and hypercholesteremia. DCM is characterized by cardiac dysfunction, cardiac biomarkers CKMB and LDH, which were attenuated by the EECQ treatment. The hypertrophic biomarker ANP, BNP expression and cardiomyocyte surface area were decreased by EECQ. Moreover, EECQ also alleviated the biomarkers Angiotensin II and renin level. EECQ also reduced oxidative stress, ROS production and cardiac inflammation. CONCLUSIONS: Thus, these findings suggested that EECQ could be used as a possible therapeutic regiment to treat DCM.


Cissus quadrangularis ameliorates hyperglycaemia, hyperinsulinemia and hyperlipidaemia.Cissus quadrangularis mitigates cardiac dysfunction.Cissus quadrangularis decreases RAAS activation, thereby down-regulates ANP, BNP expression.Cissus quadrangularis alleviates ROS propagated oxidative stress and apoptosis.


Asunto(s)
Cissus , Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratas , Animales , Cissus/química , Estreptozocina/farmacología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Especies Reactivas de Oxígeno , Sistema Renina-Angiotensina , Extractos Vegetales/farmacología , Extractos Vegetales/química , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Etanol/farmacología , Diabetes Mellitus/tratamiento farmacológico
9.
Exp Gerontol ; 159: 111681, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973346

RESUMEN

Insulin resistance (IR) is a significant complication in menopausal women, which predisposes them to cardiovascular disorder, obesity, and diabetes. Cissus quadrangularis is a polyphenolic plant rich in nutrients and is used as an edible vegetable in Nigeria. Previously, we investigated that C. quadrangularis extract (EECQ) treatment ameliorates IR, hyperlipidemia, and overweight in diabetic rats. Accordingly, in the current study, we further evaluated the adiponectin mimetic activity of EECQ in peri-/post-menopausal rats. Perimenopause was induced by High-fat diet/4-vinylcyclohexenediepoxide/(HFD-VCD), while postmenopause was by HFD/bilateral ovariectomy (HFD-OVX). Both the menopausal rats demonstrated an abnormal level of sex hormones, IR, hyperlipidemia, increased fat mass, and abnormal weight gain. Nevertheless, EECQ treated group revealed protection from these untoward complications. Furthermore, the docking score of major constituents of EECQ on adiponectin receptor 1 (AdipoR1) depicted a strong binding affinity, which was comparable to the ligand adipoRon. Besides, AdipoR1 expression determined by RT-PCR, Western blotting, and immunohistochemistry was downregulated in peri-/post-menopausal rats. Similarly, the expression of AdipoR1 downstream marker APPL1 and insulin sensitivity markers, including IRS1, Akt1, and GLUT4, were also dysregulated in menopausal rats. However, EECQ treated rats manifested restoration of normal expression of APPL1, IRS1, Akt1, and GLUT4 by upregulating AdipoR1. Altogether, the current study promulgated the adiponectin mimetic activity of EECQ, which is substantial to mitigate IR in menopausal conditions.


Asunto(s)
Cissus , Diabetes Mellitus Experimental , Resistencia a la Insulina , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adiponectina/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Resistencia a la Insulina/fisiología , Proteínas del Tejido Nervioso/metabolismo , Extractos Vegetales/farmacología , Posmenopausia , Ratas , Receptores de Adiponectina/metabolismo
10.
Clin Exp Hypertens ; 44(1): 63-71, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-34648416

RESUMEN

BACKGROUND: Endothelial dysfunction is related to the reduced bioavailability of nitric oxide (NO) and plays a significant role in developing hypertension. The intake of a diet rich in antioxidants decreases the threat of hypertension. Cissus quadrangularis possesses antioxidant, anti-inflammatory, and hypocholesterolemic activities. However, to date, no studies have been performed to explore this plant's antihypertensive and vasorelaxant activity. Herein, we investigated the chronic effect of C. quadrangularis on blood pressure as well as vascular function in hypertensive rats. METHODS: Male spontaneously hypertensive rats (SHR) were randomly divided into two groups. Normotensive Wistar rats were taken as the control group. The treatment was done using ethanolic extract of C. quadrangularis (EECQ) at a dose of 200 mg/kg. RESULTS: The administration of EECQ for six weeks reduced the systolic blood pressure, mean arterial blood pressure, and heart rate. It also alleviated the cardiac and renal hypertrophy indices. Supplementation of EECQ improved the endothelium-dependent aortic vasodilation induced by acetylcholine. It restored the NO level and endothelial NO synthase expression in the aorta. Subsequently, the extract alleviates the oxidative stress and inflammatory markers in SHR rats. CONCLUSION: Thus, in the present study, the chronic treatment of EECQ to genetically hypertensive rats improved endothelium-dependent relaxation in addition to its antihypertensive effect by eNOS activation and inhibition of ROS production, inflammation.


Asunto(s)
Cissus , Hipertensión , Animales , Cissus/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Wistar , Vasodilatación
11.
Pan Afr Med J ; 40: 85, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34909074

RESUMEN

Rubinstein-Taybi syndrome (RSTS) is a chromosomal segment 16p13.3 microdeletion syndrome and is characterized by CREBBP gene mutations, delay in the development of height and weight, distinctive facial features, broad and sometimes angulated thumbs and halluces, short stature, and intellectual impairment that is mild to extreme. Current literature emphasizes mainly medical, dental, and psychiatric issues in RSTS and there is no retrievable literature on physiotherapy and its role in improving motor function in RSTS. The present case report is of a baby girl of 17 months suspected case of RSTS, presented with all the features of RSTS. Delay in the acquisition of skills and development were the chief complaints. We designed a 12-week treatment regimen that concentrated mainly on transitions using principles of neurodevelopmental therapy. Gross motor function measure (GMFM 88) was taken pre- and post-treatment which showed tremendous improvement. This is the first study on the role of physiotherapy in RSTS.


Asunto(s)
Enanismo , Síndrome de Rubinstein-Taybi , Proteína de Unión a CREB/genética , Femenino , Humanos , Lactante , Mutación , Fenotipo , Modalidades de Fisioterapia , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética
12.
Molecules ; 26(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34577192

RESUMEN

Achieving the full potential of magnesium-ion batteries (MIBs) is still a challenge due to the lack of adequate electrodes or electrolytes. Grignard-based electrolytes show excellent Mg plating/stripping, but their incompatibility with oxide cathodes restricts their use. Conventional electrolytes like bis(trifluoromethanesulfonyl)imide ((Mg(TFSI)2) solutions are incompatible with Mg metal, which hinders their application in high-energy Mg batteries. In this regard, alloys can be game changers. The insertion/extraction of Mg2+ in alloys is possible in conventional electrolytes, suggesting the absence of a passivation layer or the formation of a conductive surface layer. Yet, the role and influence of this layer on the alloys performance have been studied only scarcely. To evaluate the reactivity of alloys, we studied InSb as a model material. Ex situ X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy were used to investigate the surface behavior of InSb in both Grignard and conventional Mg(TFSI)2/DME electrolytes. For the Grignard electrolyte, we discovered an intrinsic instability of both solvent and salt against InSb. XPS showed the formation of a thick surface layer consisting of hydrocarbon species and degradation products from the solvent (THF) and salt (C2H5MgCl-(C2H5)2AlCl). On the contrary, this study highlighted the stability of InSb in Mg(TFSI)2 electrolyte.

13.
Life Sci ; 284: 119905, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453940

RESUMEN

AIMS: Mitochondrial dysfunction is among the key factors for the advancement of hepatic steatosis to NAFLD and NASH. Pancreastatin (PST: human ChgA250-301) is a dysglycemic hormone, previously reported to promote steatosis and inflammation in various animal models of metabolic disorders. Recently, we observed PST deregulates energy expenditure and mitochondrial functioning in perimenopausal rats. In the current study, we aimed to decipher the role of PST instigated altered mitochondrial functioning in hepatic steatosis. MAIN METHODS: The HepG2 cells were PST exposed and the Chga gene was knocked down using siRNA and lipofectamine. Parallelly, type 2 diabetes (T2D) was developed in C57BL/6 mice by HFD feeding and administered PST inhibitor (PSTi8). KEY FINDINGS: The PST exposed cells and HFD fed mice depicted: enhanced CHGA expression detected by IF/IHC, WB, and ELISA; dysregulated cellular ROS, mitochondrial ROS, oxygen consumption rate, mitochondrial membrane potential, ATP level, and NADP/NADP ratio; enhanced apoptosis determined by MTT, TUNEL, Annexin-V FITC, and WB of Bax/bcl2 and caspase 3; hepatic lipid accumulation upon Nile Red, Oil Red O, H&E staining, and the expression of SREBP-1c, FAS, ACC, and SCD; inflammation based on expression and circulatory level of IL6, IL-1ß, and TNF-α. However, Chga knocked down HepG2 cells and PSTi8 treated mice unveiled protection from all the above abnormalities. SIGNIFICANCE: Collectively, the aforementioned data suggested the alteration in mitochondrial function induced by PST is responsible for hepatic steatosis in T2D.


Asunto(s)
Cromogranina A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hígado Graso/metabolismo , Mitocondrias Hepáticas/metabolismo , Animales , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Células Hep G2 , Humanos , Inflamación/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Masculino , Ratones Endogámicos C57BL
14.
Life Sci ; 279: 119677, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34081990

RESUMEN

AIMS: Pancreastatin (PST) is a crucial bioactive peptide derived from chromogranin A (CHGA) proprotein that exhibits an anti-insulin effect on adipocytes. Herein, we investigated the effects of PST on brown adipose tissues (BAT) and white adipose tissue (WAT) in connection with uncoupling protein-1 (UCP-1) regulated energy expenditure in high fructose diet (HFrD) fed and vinylcyclohexenediepoxide (VCD) induced perimenopausal rats. MATERIAL AND METHODS: We administered VCD in rats for 17 consecutive days and fed HFrd for 12 weeks. After 12 weeks estradiol and progesterone levels were detected. Furthermore, detection of glucose tolerance, insulin sensitivity, and body composition revealed impaired glucose homeostasis and enhanced PST levels. Effects of enhanced PST on UCP-1 level in BAT and WAT of perimenopausal rats were further investigated. KEY FINDINGS: Reduced serum estradiol, progesterone, and attenuated insulin response confirmed perimenopausal model development. Furthermore, enhanced PST serum level and its increased expression in BAT and WAT downregulated the UCP-1 expression. Subsequently, impaired ATP level, NADP/NADPH ratio, citrate synthase activity, enhanced mitochondrial reactive oxygen species (ROS) generation and perturbed mitochondrial membrane potential, further exacerbated mitochondrial dysfunction, cellular ROS production, and promoted apoptosis. Interestingly, PST inhibition by PST inhibitor peptide-8 (PSTi8) displayed a favorable impact on UCP-1 and energy expenditure. SIGNIFICANCE: The aforementioned outcomes indicated the substantial role of PST in altering the UCP-1 expression and associated energy homeostasis. Hence our results corroborate novel avenues to unravel the quest deciphering PST's role in energy homeostasis and its association with perimenopause.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Cromogranina A/farmacología , Metabolismo Energético , Fructosa/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Resistencia a la Insulina , Menopausia , Ratas , Ratas Sprague-Dawley , Edulcorantes/administración & dosificación , Proteína Desacopladora 1/genética
15.
J Pharm Pharmacol ; 73(11): 1442-1450, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34128987

RESUMEN

OBJECTIVES: Hyperglycemia-induced SIRT1, DNMT1, SODs, as well as oxidative stress, play a pivotal role in the progression of diabetic nephropathy. Cissus quadrangularis, holds antioxidant and hypoglycemic activity; however, a direct link between its activity and prevention of diabetic nephropathy has not been ascertained yet. Accordingly, we aimed to delineate the protective effect of ethanolic extract of Cissus quadrangularis (EECQ) against high-fat diet/streptozotocin (HFD/STZ) induced diabetic nephropathy rats. METHODS: The control group was fed with a normal chow diet. Rats kept on an HFD for 12 weeks with a single low dose of STZ manifested the features of diabetic nephropathy. The treatment was done by the oral administration of EECQ (200 mg/kg) for six weeks (six rats in each group). KEY FINDINGS: Treatment with EECQ demonstrated substantial attenuation of elevated insulin resistance, lipid profile and creatinine level. Additionally, EECQ restored albuminuria, glomerular filtration rate and creatinine clearance in diabetic nephropathy rats. Furthermore, HFD consumption in rats culminated in reduced SIRT1 and enhanced DNMT1 expression, nonetheless, rescued by EECQ. Moreover, EECQ augmented the SOD 1 and 3 levels, thereby safeguarded from oxidative damage and renal inflammation. Besides, treatment protected from renal fibrosis by downregulating TGFß, Smad2/3 and col1/3 expression in diseased rats. CONCLUSIONS: Thus, based on the above findings, we conclude that EECQ shows a protective effect against diabetic nephropathy.


Asunto(s)
Cissus , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Riñón/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Represoras/metabolismo , Sirtuina 1/metabolismo , Albuminuria , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Creatinina/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/prevención & control , Dieta Alta en Grasa , Tasa de Filtración Glomerular , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Inflamación , Resistencia a la Insulina , Riñón/metabolismo , Riñón/patología , Lípidos/sangre , Masculino , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Ratas Sprague-Dawley , Proteínas Smad Reguladas por Receptores/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Int J Biol Macromol ; 182: 760-771, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33862075

RESUMEN

Recent findings suggest that the accumulation of misfolded aggregates of islet amyloid peptide (IAPP) plays an essential role in pancreatic damage and type 2 diabetes (T2D). Pancreastatin (PST), a chromogranin derived peptide, instigates insulin resistance (IR) and promotes T2D. Here, we aimed to investigate whether PST induces IAPP aggregation in the pancreas, liver, and skeletal muscles. Foremost, we unraveled kinetics of fibril formation by ThT kinetic assay, ANS binding, turbidity, and far UV-CD. Subsequently, we checked the microarchitecture of fibril by TEM. Moreover, the PST action on IAPP expression was examined by immunocytochemistry, immunohistochemistry, western blotting, and real-time PCR. The outcome of spectral analysis and TEM demonstrated the fibril formation in the alone IAPP group but not in the alone PST; however, PST with IAPP produced stronger fibril. Moreover, PST was found to stimulate IAPP aggregation and expression more prominently in PANC1 and HepG2 cells, and pancreas and liver tissues than in L6 and skeletal muscle. Subsequently, pancreastatin inhibitor manifested a decline in the extent of the IAPP fibril formation and its expression. To conclude, PST upon combination induces the aggregation of IAPP in the pancreas, liver, and skeletal muscle, which may have the potential to generate IR and cause T2D.


Asunto(s)
Cromogranina A/farmacología , Diabetes Mellitus Tipo 2/etiología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Hígado/metabolismo , Páncreas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Amiloide/metabolismo , Animales , Células Hep G2 , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Páncreas/efectos de los fármacos , Agregación Patológica de Proteínas/patología , Pliegue de Proteína
17.
Heliyon ; 6(10): e05133, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33033766

RESUMEN

In the preceding study, we delineated that high-fat diet (HFD) consumption in mice increases the circulatory level of pancreastatin (PST), which additionally enhances the free fatty acid (FFA) concentration in circulation. Consequently, the aggravated FFA activates Fetuin-A, which facilitates hepatic lipid accumulation, insulin resistance (IR), and culminates in type 2 diabetes (T2D). Metformin (Met) is a widely known first-line drug for the treatment of T2D. We previously unveiled PSTi8, an inhibitor of PST, comprising antidiabetic property. Hence, we hypothesized that combination therapy of Met and PSTi8, at reduced therapeutic doses, would mitigate HFD-induced IR by inhibiting hepatic Fetuin-A in mice model of T2D. C57BL/6 mice were fed HFD for 12 weeks, followed by treatment with Met, PSTi8, and its combination for 10 days. Glucose and insulin tolerance tests were conducted. Circulatory levels of PST, Fetuin-A, and lipid markers were determined. Also, the mRNA and protein expression of Fetuin-A was assessed by qPCR, western blotting, and immunofluorescence. Moreover, the energy expenditure was measured by comprehensive laboratory animal monitoring system (CLAMS). Combination therapy displayed improved PST, Fetuin-A, and lipid profile in plasma. We also found reduced hepatic Fetuin-A, which reduced inhibitory phosphorylation of IRS and increased phosphorylation of AKT. Consequently, ameliorated hepatic lipogenesis, gluconeogenesis, and inflammation. Also, combination treatment attenuated Fetuin-A expression, lipid accumulation, and glucose production in palmitate-induced HepG2 cells. Altogether current study promulgates the beneficial effect of combination therapy of Met and PSTi8 (comparable to alone higher therapeutic doses) to ameliorate Fetuin-A activation, hepatic lipid accumulation, insulin resistance, and associated progressive pathophysiological alterations in T2D.

18.
Life Sci ; 257: 118118, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702445

RESUMEN

AIMS: Recent findings have instituted the role of hyperglycemia-related AGE/RAGE and NF-κB in instigating reactive oxygen species (ROS) mediated mitochondrial dysfunction and apoptosis of hepatocyte, which leads to steatohepatitis. Naringin, a flavanone glycoside found to possess myriads of pharmacological benefits along with its antioxidant and anti-inflammatory properties. Consequently, we aimed to decipher the effect of naringin on RAGE/NF-κB mediated mitochondrial apoptosis in type 2 diabetes mellitus (T2DM)-induced steatohepatitis. MAIN METHODS: Hepatic HepG2 cells were cultured in palmitic acid medium with and without naringin. Lipid content was examined by Oil Red O and Nile Red staining. Cellular apoptosis was determined by Annexin V-FITC/PI staining. An experimental T2DM-induced steatohepatitis was developed in Sprague Dawley rats by high-fat diet (HFD) for 12 weeks. The naringin was administrated orally at a dose of 100 mg/kg, daily for eight weeks. Glucose and insulin tolerance test was performed. Liver sections were stained by hematoxylin-eosin and picrosirius red. The mRNA and protein expression of RAGE and NF-κB were determined by qPCR, Immunofluorescence, and Immunoblotting. Mitochondrial membrane potential (MMP), cellular and mitochondrial ROS were measured by FACS. KEY FINDINGS: Palmitic acid encountered HepG2 cells and HFD fed rats exhibited hyperlipidemia, insulin resistance, abnormal aminotransferases, steatosis, and fibrosis. Besides, the level of AGEs, RAGE, NF-κB, and oxidative stress were exacerbated. Moreover, MMP, cellular and mitochondrial ROS were altered in diabetic rats. Nevertheless, the naringin treatment ameliorated the steatohepatitis by improving the levels of aforementioned parameters. SIGNIFICANCE: Collectively, these findings suggested anti-steatohepatitis potential of naringin in diabetics.


Asunto(s)
Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Hígado Graso/tratamiento farmacológico , Flavanonas/uso terapéutico , Mitocondrias/efectos de los fármacos , FN-kappa B/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Hígado Graso/etiología , Hígado Graso/patología , Técnica del Anticuerpo Fluorescente , Prueba de Tolerancia a la Glucosa , Células Hep G2/efectos de los fármacos , Humanos , Insulina/sangre , Hígado/patología , Masculino , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Heliyon ; 6(12): e05826, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426334

RESUMEN

AIMS: Hepatic steatosis in women confronting menopause is the manifestation of substantial fructose consumption and forms a positive feedback loop to develop endoplasmic reticulum (ER) stress. Previously pancreastatin inhibitor peptide-8 (PSTi8) and Metformin (Met) combination effectively ameliorated hepatic lipid accumulation in high fructose diet (HFrD) fed diabetic mice models at reduced doses. Moreover, SIRT-1 plays a crucial role in the regulation of SREBP-1c. Hence we hypothesized that Met and PSTi8 in combination (at therapeutic lower doses) could mitigate hepatic steatosis linked ER stress by activating SIRT-1 and precluding SREBP-1c in HFrD fed 4-Vinylcyclohexenediepoxide (HVCD) induced perimenopausal rats. MAIN METHODS: HVCD rats were fed HFrD for 12 weeks, accompanied by 14 days of treatment with Met, PSTi8, and combination. We confirmed model establishment by estrus cycle study, estradiol level, and intraperitoneal glucose tolerance test. Plasma lipid profile and liver function were determined. Also, mRNA and protein expressions were examined. Moreover, distribution of SIRT-1 and SREBP-1c was detected in HepG2 cells by immunofluorescence staining. KEY FINDINGS: HVCD group displayed augmented insulin resistance (IR), lipogenesis, and ER stress in the liver. Combination therapy improved the estrus cyclicity, estradiol, and lipid profile of HVCD rats. Met and PSTi8 combination reduced hepatic SREBP-1c and triggered SIRT-1 expression in high fructose-induced insulin-resistant HepG2 cells; consequently, combination therapy attenuated ER stress. SIGNIFICANCE: Succinctly, present research promotes impetus concerning the remedial impact of Met with PSTi8 at lower therapeutic doses to ameliorate hepatic IR, steatosis, and associated ER stress by revamping the SIRT-1/SREBP-1c axis in perimenopausal rats.

20.
Artículo en Inglés | MEDLINE | ID: mdl-31368881

RESUMEN

BACKGROUND & OBJECTIVE: Significant health and social burdens have been created by the growth of metabolic disorders like type 2 diabetes mellitus (T2DM), atherosclerosis, and non-alcoholic steatohepatitis, worldwide. The number of the affected population is as yet rising, and it is assessed that until 2030, 4-5 million individuals will acquire diabetes. A blend of environmental, genetic, epigenetic, and other factors, such as diet, are accountable for the initiation and progression of metabolic disorders. Several researches have shown strong relevance of adiponectin gene and metabolic disorders. In this review, the potential influence of epigenetic mechanisms of adiponectin gene "ADIPOQ" on increasing the risk of developing metabolic disorders and their potential in treating this major disorder are discussed. RESULTS & CONCLUSION: Various studies have postulated that a series of factors such as maternal High fat diet (HFD), oxidative stress, pro-inflammatory mediators, sleep fragmentation throughout lifetime, from gestation to old age, could accumulate epigenetic marks, including histone remodeling, DNA methylation, and microRNAs (miRNAs) that, in turn, alter the expression of ADIPOQ gene and result in hypoadiponectinemia which precipitates insulin resistance (IR) that in turn might induce or accelerate the onset and development of metabolic disorder. A better understanding of global patterns of epigenetic modifications and further their alterations in metabolic disorders will bestow better treatment strategies design.


Asunto(s)
Adiponectina/genética , Adiponectina/metabolismo , Epigénesis Genética/fisiología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Animales , Metilación de ADN/fisiología , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Resistencia a la Insulina/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA