Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neurol Belg ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147996

RESUMEN

Developmental and epileptic encephalopathy type 25 with amelogenesis imperfecta (DEE25) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous disease-causing variants in the SLC13A5. These variants can disrupt energy production and delay brain development, leading to DEE25. Key symptoms include refractory seizures, often manifesting in neonates or infants, alongside global developmental delay, intellectual disability, progressive microcephaly, ataxia, spasticity, and speech difficulties. Dental anomalies related to amelogenesis imperfecta are common. Previous studies have typically reported normal or minimally altered early-life brain magnetic resonance imaging (MRI) findings in DEE25. However, our investigation identified a homozygous splice donor variant (NM_177550.5: c.1437 + 1G >T) in SLC13A5 through whole-exome sequencing in two affected siblings (P1 and P2). They displayed developmental delay, cerebral hypotonia, speech delay, recurrent seizures, mild but constant microcephaly, and motor impairments. Significantly, P1 exhibited novel findings on brain magnetic resonance imaging at age 5, including previously unreported extensive persistent hypomyelination. Meanwhile, P2 showed substantial loss of cerebral white matter in the frontoparietal region and delayed myelination at 18 months old. These discoveries broaden the DEE25 imaging spectrum and highlight the clinical heterogeneity even within siblings sharing the same variants.

2.
Ir J Med Sci ; 193(1): 449-456, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37523070

RESUMEN

BACKGROUND: Aminoacylase-1 deficiency (ACY1D) is an autosomal recessive rare inborn error of metabolism, which is caused by disease-causing variants in the ACY1. This disorder is characterized by increased urinary excretion of specific N-acetyl amino acids. Affected individuals demonstrate heterogeneous clinical manifestations which are primarily neurologic problems. In neuroimaging, corpus callosum hypoplasia, cerebellar vermis atrophy, and delayed myelination of cerebral white matter have been reported. AIMS: Finding disease-causing variant and expanding imaging findings in a patient with persistent basal ganglia involvement. METHODS: Whole-exome sequencing was performed in order to identify disease-causing variants in an affected 5-year-old male patient who presented with neurologic regression superimposed on neurodevelopmental delay following a febrile illness. He had inability to walk, cognitive impairment, speech delay, febrile-induced seizures, truncal hypotonia, moderate to severe generalized dystonia, and recurrent metabolic decompensation. RESULTS: All metabolic tests were normal except for a moderate metabolic acidosis following febrile illnesses. The results of serial brain magnetic resonance imaging (MRI) at ages 1 and 4.5 years revealed persistent bilateral and symmetric abnormal signals in basal ganglia mainly caudate and globus pallidus nuclei with progression over time in addition to a mild supratentorial atrophy. A homozygous missense variant [NM_000666.3: c.1057C>T; p.(Arg353Cys)] was identified in the ACY1, consistent with aminoacylase-1 deficiency. Variant confirmation in patient and segregation analysis in his family were performed using Sanger sequencing. CONCLUSIONS: Our findings expanded the phenotype spectrum of ACY1-related neurodegeneration by demonstrating persistent basal ganglia involvement and moderate to severe generalized dystonia.


Asunto(s)
Amidohidrolasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos , Distonía , Masculino , Humanos , Preescolar , Distonía/metabolismo , Distonía/patología , Mutación , Ganglios Basales/metabolismo , Ganglios Basales/patología , Atrofia/metabolismo , Atrofia/patología , Imagen por Resonancia Magnética
3.
Clin Case Rep ; 11(10): e8062, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881193

RESUMEN

Congenital myasthenic syndromes-5 (CMS5) is a rare autosomal recessive heterogeneous disorder, caused by pathogenic variants in the COLQ that lead to skeletal muscle weakness and abnormal fatigability. The onset is usually from birth to childhood. Disease-causing variants in the collagen-like tail subunit are the most explained etiology in synaptic CMS, causing defected acetylcholinesterase. In this study whole-exome sequencing (WES) was performed in an affected boy with muscle weakness, ophthalmoplegia, and bilateral ptosis and gene expression assay by qRT-PCR was performed in entire family. A homozygous nonsense variant in the COLQ [NM_005677.4:c.679C>T], (p.Arg227Ter) was identified in the proband. Segregation analysis by Sanger sequencing confirmed the homozygous state in the proband and heterozygous state in his parents and four of the siblings. The mRNA expression level in the proband was 0.02 of a healthy person, and in the carriers were 0.42 of a healthy person. This study presents an Iranian family with two affected children and eight symptomatic carriers with attenuated mRNA expression. This study provides evidence that carriers of the COLQ disease-causing variants could become symptomatic with some yet unknown pathogenesis mechanism and underscore the importance of further investigations to elucidate this mechanism.

4.
Neurogenetics ; 24(2): 67-78, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36633690

RESUMEN

Guanidinoacetate methyltransferase deficiency (GAMTD) is a treatable neurodevelopmental disorder with normal or nonspecific imaging findings. Here, we reported a 14-month-old girl with GAMTD and novel findings on brain magnetic resonance imaging (MRI).A 14-||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||month-old female patient was referred to Myelin Disorders Clinic due to onset of seizures and developmental regression following routine vaccination at 4 months of age. Brain MRI, prior to initiation of treatment, showed high signal intensity in T2-weighted imaging in bilateral thalami, globus pallidus, subthalamic nuclei, substantia nigra, dentate nuclei, central tegmental tracts in the brainstem, and posterior periventricular white matter which was masquerading for mitochondrial leukodystrophy. Basic metabolic tests were normal except for low urine creatinine; however, exome sequencing identified a homozygous frameshift deletion variant [NM_000156: c.491del; (p.Gly164AlafsTer14)] in the GAMT. Biallelic pathogenic or likely pathogenic variants cause GAMTD. We confirmed the homozygous state for this variant in the proband, as well as the heterozygote state in the parents by Sanger sequencing.MRI features in GAMTD can mimic mitochondrial leukodystrophy. Pediatric neurologists should be aware of variable MRI findings in GAMTD since they would be misleading to other diagnoses.


Asunto(s)
Trastornos del Desarrollo del Lenguaje , Trastornos del Movimiento , Niño , Humanos , Femenino , Lactante , Irán , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/metabolismo , Guanidinoacetato N-Metiltransferasa/metabolismo , Neuroimagen
5.
J Mol Neurosci ; 72(5): 1098-1107, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35218518

RESUMEN

This manuscript aimed to determine the underlying point mutations causing Duchenne muscular dystrophy (DMD) in a heterogeneous group of Iranian patients, who are clinically suspected. Whole-exome sequencing was utilized to detect disease-causing variants in 40 MLPA-negative DMD patients. Disease-causing variants were detected in the DMD gene in 36/40 of the patients (90%), and 4/40 of them (10%) remained undiagnosed. WES analysis revealed that nonsense variant was the most common type in our study (23/36 of the cases). Besides, 12/36 of the cases had frameshift variant, and one of the patients had a likely pathogenic splice variant in the DMD gene. Carrier testing revealed that 21/40 of the mothers had the identified variant. Therefore, most variants were inherited (58.3%), while 19/40 were de novo (41. 7%). The present study has demonstrated the importance of performing WES to detect disease-causing point mutations in MLPA-negative DMD patients and to identify carrier females. Due to regulatory challenges, the clinical development of therapeutic approaches is time-consuming and may not be available to all patients shortly. Therefore, it appears that the techniques used to accurately detect disease-causing variants in carrier mothers are a more efficient solution to prevent the increased prevalence of DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Femenino , Pruebas Genéticas , Humanos , Irán , Distrofia Muscular de Duchenne/genética , Mutación , Secuenciación del Exoma
6.
Mol Genet Genomic Med ; 9(11): e1834, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34636477

RESUMEN

BACKGROUND: 3MC syndrome type 3 is an autosomal recessive disorder caused by mutations in the COLEC10 gene besides other genes like COLEC11 and MASP1. This disorder is characterized by facial dysmorphism, cleft lip and palate, postnatal growth deficiency, cognitive impairment, hearing loss, craniosynostosis, radioulnar synostosis, genital and vesicorenal anomalies, cardiac anomalies, caudal appendage, and umbilical hernia. METHODS: In the present study, whole-exome sequencing was performed in order to identify disease causing variant in an Iranian 7-year-old affected girl with craniosynostosis, dolichocephaly, blepharoptosis, clinodactyly of the 5th finger, high myopia, long face, micrognathia, patent ductus arteriosus, downslanted palpebral fissures, telecanthus, and epicanthus inversus. Identified variant confirmation in the patient and segregation analysis in her family were performed using Sanger sequencing method. RESULTS: A novel homozygous frameshift deletion variant [NM_006438.5: c.128_129delCA; p.(Thr43AsnfsTer9)] was identified within the COLEC10 gene. Up to now, only three 3MC syndrome patients with mutations in the COLEC10 gene have been reported, and here, we report the fourth patient and the first homozygous frameshift variant. CONCLUSION: Other genes and factors responsible for 3MC syndrome occurrence are remained to be discovered. We believe further investigation of the genes in the lectin complement pathway is needed to be done for the identification of other causes of this disease.


Asunto(s)
Labio Leporino , Fisura del Paladar , Niño , Labio Leporino/genética , Fisura del Paladar/genética , Colectinas/genética , Colectinas/metabolismo , Femenino , Humanos , Irán , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA