Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107467

RESUMEN

As a toxic heavy metal, lead (Pb) is well known for impairment of renal function due to oxidative injuries. In contrast, the antioxidant activity of silibinin has been approved. Given the role of silibinin antioxidant activity, the present study investigated the effectiveness of silibinin-loaded nanostructured lipid carriers (Sili-NLCs) against Pb-induced acute nephrotoxicity in rats. The emulsification-solvent evaporation method was applied to prepare Sili-NLCs. Sixty male Wistar rats were divided into ten separate groups. Pb (20 mg/kg/day, i.p.) was applied to induce nephrotoxicity and in the treatment groups animals received the same concentration of silibinin and Sili-NLCs (25, 50, and 100 mg/kg/day, p.o.) for five days. After sacrificing rats, kidney tissue samples were collected to assess the oxidative stress parameters, including lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity. Also, histopathological examination using Hematoxylin-Eosin (H&E) was studied. Not only did Pb injection significantly increase the renal levels of LPO and NO, but also decreased the levels of antioxidant enzyme activity. On the other hand, Sili-NLCs were more effective than silibinin in decreasing renal oxidative damage by increasing the antioxidant defense system. Moreover, the histopathological examination correlated well with biochemical findings. Our data suggested that Sili-NLCs are potentially superior to pure silibinin for attenuating Pb-induced acute nephrotoxicity.

2.
Cell Biochem Biophys ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990419

RESUMEN

BACKGROUND: The neuroprotective effects of Dehydroepiandrosterone (DHEA) and Hericium erinaceus (H. erinaceus) mushroom extract against scopolamine-induced Alzheimer's disease-like symptoms in male Wistar rats were investigated. METHODS: Sixty-four male Wistar rats were divided into eight groups (n = 8). Scopolamine (SCO) was intraperitoneally injected at a dose of 1 mg/kg/day for 10 days. The treatment groups orally received DHEA (250 mg/kg/day) and/or H. erinaceus (300 mg/kg/day) for 14 days. Afterward, the Morris water maze (MWM) and novel object recognition tests were implemented. Then, animals were anesthetized and the brain tissue samples were separated. Levels of lipid peroxidation (LPO), total antioxidant capacity (TAC), catalase activity (CAT), and brain-derived neurotrophic factor (BDNF) were determined. Also, histopathological studies were evaluated in the brain tissue samples. RESULTS: Administration of SCO significantly decreased spatial and cognitive memory (p < 0.001). Not only did SCO injection significantly increase the levels of the LPO but also the SCO markedly reduced the levels of the TAC, CAT activity, and the BDNF in the brain tissue. On the other hand, a combination of the DHEA and H. erinaceus showed higher efficacy than the DHEA or H. erinaceus in attenuating behavioral anomalies and improving the antioxidant defense system and BDNF levels. Histological examination was well correlated with biochemical findings regarding SCO neurodegeneration and DHEA and/or H. erinaceus neuroprotection. CONCLUSION: Interestingly, ADHE and/or H. erinaceus may due to their potential neurotrophic properties be used as a new and beneficial concurrent therapy in the treatment of Alzheimer's disease-like symptoms caused by SCO.

3.
Cell Biochem Biophys ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760648

RESUMEN

The neurotoxicity of 3-Nitropropionic acid (3-NP) is well known. Herein, the prophylactic versus therapeutic effects of quercetin (QCT) were investigated against 3-NP-induced behavioral anomalies and oxidative neural damage. Thirty male mice were assigned into five groups; the negative control group, the QCT group (25 mg/kg/day, p.o. for 21 days), the 3-NP group (17 days), the prophylactic group (QCT administration for 14 consecutive days, and then 3-NP was administrated), the therapeutic group (3-NP was administrated and then QCT for 21 days). At the end of the animal treatment, behavioral studies were assessed. Subsequently, the brain sample tissues were assessed for oxidative stress-related parameters and histological evaluation. Moreover, the potential interaction between 3-NP and tumor necrosis factor-alpha (TNF-α) was evaluated by using a molecular docking study. 3-NP markedly led to neurotoxicity which was indicated by behavioral deficits (motor behavior, depression-like behavior, memory dysfunction, and passive avoidance) and oxidative damage. Blind and targeted molecular docking results showed good interaction between 3-NP and TNF-α. However, the prophylactic effects of QCT were superior to the therapeutic effects for attenuating 3-NP-induced neurobehavioral and oxidative neural changes in experimental mice, which histological changes of the brain's striatum region approved our findings. Taken together, the antioxidant activity of QCT remarkably could attenuate 3-NP-induced neurobehavioral deficits and mitochondrial dysfunctions in mice.

4.
Physiol Behav ; 277: 114494, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360390

RESUMEN

Quercetin (QCT) is well-known as a neuroprotective agent due to its antioxidant capacities and reinstating mitochondrial functions. Scopolamine is commonly used as a model to induce Alzheimer's disease (AD-like) symptoms. The current study develops QCT-loaded nanoemulsion (QCT-NE) accompanied by evaluating its neuro-therapeutic effectiveness against SCO-induced neurotoxicity in male rats. The QCT-NE was prepared by the spontaneous emulsification technique and characterized by using particle size, zeta potential, drug loading, in vitro drug release behavior, and stability studies. In vivo studies were done on adult Wistar rats by applying the Morris water maze (MWM) test to study spatial memory and learning. The levels of lipid peroxidation and reduced glutathione were quantitatively determined to reveal the potential mechanism of SCO-induced oxidative stress. Finally, histological studies were performed using staining techniques. The QCT-NE particle size, zeta potential, polydispersity index (PDI), and DL were obtained at 172.4 ± 16.8 nm, -29 ± 0.26 mV, 0.3 ± 0.07, and 81.42 ± 9.14 %, respectively. The QCT and more effectively QCT-NE reduced the elevation of neurobehavioral abnormalities in the MWM test in SCO-exposed rats. The results of oxidative status showed that SCO significantly could increase the LPO and decrease the GSH levels in the rat's brain. However, QCT-NE treatment was more effective than free QCT to inhibit oxidative damage and was well correlated with histopathological findings. Taken together, QCT-NE, compared to QCT, was superior in ameliorating SCO-induced AD-like symptoms due to its better neuroprotective activity and can be considered a novel supplementary therapeutic agent in AD management.


Asunto(s)
Quercetina , Escopolamina , Ratas , Masculino , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Ratas Wistar , Escopolamina/toxicidad , Antioxidantes/farmacología , Estrés Oxidativo , Aprendizaje por Laberinto
5.
Neurodegener Dis Manag ; 13(6): 351-369, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38357803

RESUMEN

Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo
6.
Res Pharm Sci ; 18(6): 604-613, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39005568

RESUMEN

Background and purpose: Pain and inflammation can be treated by various therapies that for the most part are not effective and can result in adverse effects. The current study was proposed to compare the antinociceptive and anti-inflammatory actions of curcumin and nano curcumin in rats. Experimental approach: Rats were randomly allocated into ten groups of six for formalin and tail-flick tests including the control group, curcumin and nano curcumin groups (20, 50, 100 mg/kg), morphine group (10 mg/kg), naloxone + 100 mg/kg curcumin group, and naloxone + 100 mg/kg nano curcumin group. There were nine groups for the carrageenan test. Groups 1-7 were the same as the previous division; groups 8 and 9 received 10 mg/kg diclofenac and 1% carrageenan, respectively. Findings/Results: All doses of nano curcumin significantly decreased the paw-licking time in both phases of the formalin test. In the tail-flick test, curcumin 100, nano curcumin 100, naloxone + curcumin 100, and naloxone + nano curcumin 100 showed significant analgesic effects compared to the control group. In the paw edema test, at 180 s after injection, curcumin (50 and 100 mg/kg) and all doses of nano curcumin significantly inhibited carrageenan-induced edema. Myeloperoxidase activity and lipid peroxidation decreased at doses of 50 and 100 mg/kg of curcumin but at three doses of nano curcumin (20, 50, and 100 mg/kg). Conclusion and implication: In conclusion, our results suggest that the nanoemulsion formulation of curcumin can be efficient in reducing pain and especially inflammation in lower doses compared to the native form of curcumin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA