Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574916

RESUMEN

This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.


Asunto(s)
Café , Poliésteres , Polihidroxibutiratos , Café/química , Poliésteres/química , Tecnología Química Verde , Plásticos Biodegradables/química
2.
Int J Biol Macromol ; 259(Pt 2): 129190, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185304

RESUMEN

Urease is one of the most significant enzymes in the industry. The objective of this research was to isolate and partially purify urease from Vicia sativa seeds with urease characterization. With a 6.4 % yield, the purification fold was 9.0. By using chromatography, it was determined that the isolated urease had a molecular weight of 55 kDa. The maximum urease activity was found following a 60-s incubation period at 40 °C and pH 8. The activity of urease was significantly boosted by a mean of calcium, barium, DL-dithiothreitol, Na2EDTA, and citrate (16.9, 26.6, 18.6, 13.6, and 31 %), respectively. But nickel and mercury caused inhibitory effects and completely inhibited urease activity, indicating the presence of a thiol (-SH) group in the enzyme active site. The Arrhenius plot was used to analyze the thermodynamic constants of activation, Ea, ΔH*, ΔG*, and ΔS*. The results showed that the values were 30 kJ/mol, 93.14 kJ/mol, 107.17 kJ/mol/K, and -40.80 J/mol/K, respectively. The significance of urease extraction from various sources may contribute to our understanding of the metabolism of urea in plants. The current report has novelty as it explained for the first time the kinetics and thermodynamics of hydrolysis of urea and inactivation of urease from V. sativa seeds.


Asunto(s)
Ureasa , Vicia sativa , Ureasa/metabolismo , Vicia sativa/metabolismo , Termodinámica , Semillas/metabolismo , Urea/metabolismo , Cinética , Concentración de Iones de Hidrógeno
3.
PLoS One ; 18(11): e0290730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38011195

RESUMEN

The abuse of Cannabis is a widespread issue in the Asir region. It has a lot of legal and occupational repercussions. The purpose of this study was to evaluate the health status of cannabis addicts at admission and after treatment using body mass index, glycemic status, liver function, renal function, and oxidative stress. A cross-sectional study was conducted with 120 participants. The study was conducted at Al Amal Hospital for Mental Health in Asir region of Saudi Arabia, with 100 hospitalized patients receiving addiction treatment and 20 healthy volunteers. The participants were divided into two groups: group I, the control group, and group II, the cannabis addicts. The socio-demographic data were gathered. The level of cannabis in the urine and the CWAS [Cannabis Withdrawal Assessment Scale] were determined. In addition, the Body Mass Index [BMI], vital signs [temperature, heart rate, systolic blood pressure, diastolic blood pressure, and respiratory rate], serum levels of albumin, total bilirubin, direct bilirubin, AST, ALT, and ALP, urea, creatinine, Thiobarbituric acid-reactive substances [TBARS], superoxide dismutase [SOD], reduced glutathione [GSH], and catalase [CAT] were analyzed on the first day of admission and after treatment. According to the results, there was no significant change in the body mass index. The vital signs in the cannabis user group were significantly lower than the corresponding admission values. Regarding renal function tests such as urea and creatinine, we found that after treatment, the mean urea and creatinine values in the cannabis user group did not differ significantly from the corresponding admission values. However, after treatment, the mean values of fasting blood glucose levels in the cannabis user group were significantly lower than at admission. Also, the mean values of liver function tests such as albumin, total bilirubin, direct bilirubin, AST, ALT, and ALP in the cannabis user group were significantly lower than the corresponding admission values after treatment. In assessing the antioxidant system, we found that the mean values of TBARS, SOD, GSH, and CAT in the cannabis user group did not differ significantly from the corresponding admission values after treatment. The current findings have revealed that cannabis addiction harms the various body systems and has significant implications for the addict's state of health. The values of oxidative stress biomarkers did not change in this study, but other measured parameters improved after treatment.


Asunto(s)
Cannabis , Humanos , Cannabis/efectos adversos , Cannabis/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico , Creatinina , Estudios Transversales , Antioxidantes , Catalasa , Estrés Oxidativo , Bilirrubina , Glutatión , Albúminas , Urea , Estado de Salud , Superóxido Dismutasa/metabolismo , Hígado/metabolismo
4.
Environ Monit Assess ; 195(9): 1078, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615739

RESUMEN

The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second-order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.


Asunto(s)
Nanopartículas , Oryza , Cobre , Adsorción , Cinética , Monitoreo del Ambiente , Etinilestradiol , Óxidos
5.
Radiología (Madr., Ed. impr.) ; 65(4): 327-337, Jul-Ago. 2023. tab, ilus, graf
Artículo en Español | IBECS | ID: ibc-222509

RESUMEN

Introducción y objetivosPara llevar a cabo estudios de optimización de dosis, el fantoma de imagenología debe ser adecuado para evaluar la calidad de la imagen. El coste de los fantomas de gama alta suele ser prohibitivo, por lo que es necesario hallar un método de construcción asequible que emplee sustitutos tisulares que sean razonablemente fáciles de obtener.Materiales y métodosSe realizaron cálculos teóricos de las características radiológicas de cada uno de los pulmones, el hueso cortical y los tejidos blandos con el fin de elegir el sustituto adecuado; para ello, se eligieron el corcho, el cloruro de polivinilo (PVC) y el agua, respectivamente. La validación consistió, en primer lugar, en la medición de las unidades Hounsfield (UH) de tomografía computarizada (TC) de los tejidos de un paciente real y su posterior comparación con las anatomías correspondientes en el fantoma construido. En segundo lugar, se obtuvieron los valores de relación señal/ruido (S/R) y de relación contraste/ruido (C/R) para evaluar la calidad de las imágenes generadas a partir del fantoma construido y comparar sus tendencias con un fantoma válido utilizando diferentes parámetros de exposición (valores pico de kilovoltaje [kVp] y miliamperios por segundo [mAs]).ResultadosPartiendo de los cálculos teóricos, las diferencias porcentuales exhibieron una precisión elevada en los sustitutos tisulares al simular los tejidos de un paciente real; con PVC fue de ≥ 5,78%, con corcho ≥ 4,46% y con agua ≥ 5%. La diferencia porcentual (UH de TC) entre el pulmón y el hueso cortical y sus sustitutos tisulares equivalentes fue de 10,44% y de 0,53 a 3,17%, respectivamente. Se encontraron fuertes correlaciones positivas para la S/R al variar tanto los valores de kVp (0,79) como de mAs (0,65). Por el contrario, se halló que la fuerza de correlación de los valores de la C/R era moderada al cambiar los valores de kVp (0,58) y mAs (0,53).(AU)


Introduction and ObjectivesIn order to perform chest dose optimisation studies, the imaging phantom should be adequate for image quality evaluation. Since high-end phantoms are cost prohibitive, there is a need for a low-cost construction method with fairly available tissue substitutes.Materials and MethodsTheoretical calculations of radiological characteristics were performed for each of lung, cortical bone and soft tissues in order to choose appropriate substitute, then, cork, P.V.C. (Polyvinyl Chloride) and water were chosen, respectively. Validation included, firstly, measuring CT Hounsfield Units (HU) of a real patient's tissues then compared against their corresponding anatomies in the constructed phantom. Secondly, Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values were acquired in this study to evaluate the quality of images generated from the constructed phantom, then, compare their trends with a valid phantom under different exposure parameters (kVp and mAs).ResultsFrom theoretical calculations, the percentage differences showed high accuracy of tissue substitutes when simulating real patient tissues; P.V.C. was ≥ 5.78%, cork was ≥ 4.46% and water ≥ 5%. The percentage difference (CT HU) between lung and cortical bone and their equivalent tissue substitutes were 10.44% and 0.53%-3.17%, respectively. Strong positive correlations were found for SNR when changing both kVp (0.79) and mAs (0.65). While the correlation strength of CNR values were found to be moderate when changing both kVp (0.58) and mAs (0.53).ConclusionsOur low-cost phantom approved through CT HU that their materials replicate the radiological characteristics of real one-year-old child while SNR and SNR correlations confirmed its applicability in imaging and optimisation studies.(AU)


Asunto(s)
Humanos , Niño , Diagnóstico por Imagen/instrumentación , Diagnóstico por Imagen/métodos , Pediatría , Dosis de Radiación , Radiología/instrumentación , Radiología/métodos
6.
Radiologia (Engl Ed) ; 65(4): 327-337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37516486

RESUMEN

INTRODUCTION AND OBJECTIVES: In order to perform chest dose optimisation studies, the imaging phantom should be adequate for image quality evaluation. Since high-end phantoms are cost prohibitive, there is a need for a low-cost construction method with fairly available tissue substitutes. MATERIALS AND METHODS: Theoretical calculations of radiological characteristics were performed for each of lung, cortical bone and soft tissues in order to choose appropriate substitute, then, cork, P.V.C. (Polyvinyl chloride) and water were chosen, respectively. Validation included, firstly, measuring CT Hounsfield Units (HU) of a real patient's tissues then compared against their corresponding anatomies in the constructed phantom. Secondly, Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values were acquired in this study to evaluate the quality of images generated from the constructed phantom, then, compare their trends with a valid phantom under different exposure parameters (kVp and mAs). RESULTS: From theoretical calculations, the percentage differences showed high accuracy of tissue substitutes when simulating real patient tissues; P.V.C. was ≥5.78%, cork was ≥4.46% and water ≥5%. The percentage difference (CT HU) between lung and cortical bone and their equivalent tissue substitutes were 10.44% and 0.53%-3.17%, respectively. Strong positive correlations were found for SNR when changing both kVp (0.79) and mAs (0.65). While the correlation strength of CNR values were found to be moderate when changing both kVp (0.58) and mAs (0.53). CONCLUSIONS: Our low-cost phantom approved through CT HU that their materials replicate the radiological characteristics of real one-year-old child while SNR and SNR correlations confirmed its applicability in imaging and optimisation studies.


Asunto(s)
Huesos , Tomografía Computarizada por Rayos X , Humanos , Niño , Lactante , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Relación Señal-Ruido , Agua
7.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446893

RESUMEN

The current study focused on the fabrication of a well-designed, biocompatible, physically stable, non-irritating and highly porous gelatin scaffold loaded with controlled-release triamcinolone acetonide (TA) and econazole nitrate (EN) co-loaded into mesoporous silica nanoparticles (EN-TA-loaded MSNs) to provide a better long-lasting antifungal therapeutic effect with minimal unfavorable effects. Optimization of the MSNs-loaded scaffold was performed using central composite rotatable design (CCRD), where the effect of gelatin concentration (X1), plasticizer (X2) and freezing time (X3) on the entrapment of EN (Y1) and TA (Y2) and on the release of EN (Y3) and TA (Y4) from the scaffold were studied. The significant compatibility of all formulation ingredients with both drugs was established from XRD, DSC and FT-IR spectra analyses while SEM and zeta studies represented a very precise unvarying distribution of the loaded MSNs in the porous structure of the scaffold. The stability of the optimized scaffold was confirmed from zeta potential analysis (-16.20 mV), and it exhibited higher entrapment efficiency (94%) and the slower (34%) release of both drugs. During in vitro and in vivo antifungal studies against Candida albicans, the MSNs-loaded scaffold was comparatively superior in the eradication of fungal infections as a greater zone of inhibition was observed for the optimized scaffold (16.91 mm) as compared to the pure drugs suspension (14.10 mm). Similarly, the MSNs-loaded scaffold showed a decreased cytotoxicity because the cell survival rate in the scaffold presence was 89% while the cell survival rate was 85% in the case of the pure drugs, and the MSNs-loaded scaffold did not indicate any grade of erythema on the skin in comparison to the pure medicinal agents. Conclusively, the scaffold-loaded nanoparticles containing the combined therapy appear to possess a strong prospective for enhancing patients' adherence and therapy tolerance by yielding improved synergistic antifungal efficacy at a low dose with abridged toxicity and augmented wound-healing impact.


Asunto(s)
Antifúngicos , Nanopartículas , Humanos , Antifúngicos/farmacología , Gelatina , Preparaciones de Acción Retardada/farmacología , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Estudios Prospectivos , Nanopartículas/química , Portadores de Fármacos/química
8.
Gels ; 9(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37367156

RESUMEN

Nanocomposite hydrogels offer remarkable potential for applications in bone tissue engineering. They are synthesized through the chemical or physical crosslinking of polymers and nanomaterials, allowing for the enhancement of their behaviour by modifying the properties and compositions of the nanomaterials involved. However, their mechanical properties require further enhancement to meet the demands of bone tissue engineering. Here, we present an approach to improve the mechanical properties of nanocomposite hydrogels by incorporating polymer grafted silica nanoparticles into a double network inspired hydrogel (gSNP Gels). The gSNP Gels were synthesised via a graft polymerization process using a redox initiator. gSNP Gels were formed by grafting 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as the first network gel followed by a sequential second network acrylamide (AAm) onto amine functionalized silica nanoparticles (ASNPs). We utilized glucose oxidase (GOx) to create an oxygen-free atmosphere during polymerization, resulting in higher polymer conversion compared to argon degassing. The gSNP Gels showed excellent compressive strengths of 13.9 ± 5.5 MPa, a strain of 69.6 ± 6.4%, and a water content of 63.4% ± 1.8. The synthesis technique demonstrates a promising approach to enhance the mechanical properties of hydrogels, which can have significant implications for bone tissue engineering and other soft tissue applications.

9.
Plants (Basel) ; 12(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376007

RESUMEN

Abelmoschus esculentus Linn. (okra, F. Malvaceae) is a fruit widely consumed all over the world. In our study, the anti-Alzheimer's potential of A. esculentus was evaluated. An in vitro DPPH free radical assay on A. esculentus seed's total extract and AChE inhibition potential screening indicated a significant anti-Alzheimer's activity of the extract, which was confirmed through an in vivo study in an aluminum-intoxicated rat model. Additionally, in vivo results demonstrated significant improvement in Alzheimer's rats, which was confirmed by improving T-maze, beam balance tests, lower serum levels of AChE, norepinephrine, glycated end products, IL-6, and MDA. The levels of dopamine, BDNF, GSH, and TAC returned to normal values during the study. Moreover, histological investigations of brain tissue revealed that the destruction in collagen fiber nearly returns back to the normal pattern. Metabolomic analysis of the ethanolic extract of A. esculentus seeds via LC-HR-ESI-MS dereplicated ten compounds. A network pharmacology study displayed the relation between identified compounds and 136 genes, among which 84 genes related to Alzheimer's disorders, and focused on AChE, APP, BACE1, MAPT and TNF genes with interactions to all Alzheimer's disorders. Consequently, the results revealed in our study grant potential dietary elements for the management of Alzheimer's disorders.

10.
Heliyon ; 9(4): e14682, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095948

RESUMEN

Magnetic-stimuli responsive hydrogels are quickly becoming a promising class of materials across numerous fields, including biomedical devices, soft robotic actuators, and wearable electronics. Hydrogels are commonly fabricated by conventional methods that limit the potential for complex architectures normally required for rapidly changing custom configurations. Rapid prototyping using 3D printing provides a solution for this. Previous work has shown successful extrusion 3D printing of magnetic hydrogels; however, extrusion-based printing is limited by nozzle resolution and ink viscosity. VAT photopolymerization offers a higher control over resolution and build-architecture. Liquid photo-resins with magnetic nanocomposites normally suffer from nanoparticle agglomeration due to local magnetic fields. In this work, we develop an optimised method for homogenously infusing up to 2 wt % superparamagnetic iron oxide nanoparticles (SPIONs) with a 10 nm diameter into a photo-resin composed of water, acrylamide and PEGDA, with improved nanoparticle homogeneity and reduced agglomeration during printing. The 3D printed starfish hydrogels exhibited high mechanical stability and robust mechanical properties with a maximum Youngs modulus of 1.8 MPa and limited shape deformation of 10% when swollen. Each individual arm of the starfish could be magnetically actuated when a remote magnetic field is applied. The starfish could grab onto a magnet with all arms when a central magnetic field was applied. Ultimately, these hydrogels retained their shape post-printing and returned to their original formation once the magnetic field had been removed. These hydrogels can be used across a wide range of applications, including soft robotics and magnetically stimulated actuators.

11.
Diagnostics (Basel) ; 12(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36552994

RESUMEN

Lung cancer is the second most commonly diagnosed cancer in the world. In terms of the diagnosis of lung cancer, combination carcinoembryonic antigen (CEA) and cancer antigen 125 (CA125) detection had higher sensitivity, specificity, and diagnostic odds ratios than CEA detection alone. Most individuals with elevated serum CA125 levels had lung cancer that was either in stage 3 or stage 4. Serum CA125 levels were similarly elevated in lung cancer patients who also had pleural effusions or ascites. Furthermore, there is strong evidence that human lung cancer produces CA125 in vitro, which suggests that other clinical illnesses outside of ovarian cancer could also be responsible for the rise of CA125. MUC16 (CA125) is a natural killer cell inhibitor. As a screening test for lung and ovarian cancer diagnosis and prognosis in the early stages, CA125 has been widely used as a marker in three different clinical settings. MUC16 mRNA levels in lung cancer are increased regardless of gender. As well, increased expression of mutated MUC16 enhances lung cancer cells proliferation and growth. Additionally, the CA125 serum level is thought to be a key indicator for lung cancer metastasis to the liver. Further, CA125 could be a useful biomarker in other cancer types diagnoses like ovarian, breast, and pancreatic cancers. One of the important limitations of CA125 as a first step in such a screening technique is that up to 20% of ovarian tumors lack antigen expression. Each of the 10 possible serum markers was expressed in 29-100% of ovarian tumors with minimal or no CA125 expression. Therefore, there is a controversy regarding CA125 in the diagnosis and prognosis of lung cancer and other cancer types. In this state, preclinical and clinical studies are warranted to elucidate the clinical benefit of CA125 in the diagnosis and prognosis of lung cancer.

12.
ACS Omega ; 7(48): 43904-43914, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36506137

RESUMEN

Hydrogels have progressed from single-network materials with low mechanical integrity to double-network hydrogels (DNHGs) with tough, tunable properties. In this work, we introduce a nanocomposite structure into the first network of a DNHG. Amine-functionalized silica nanoparticles (ASNPs) were covalently cross-linked by forming amide bonds through the carboxylic groups of polyacrylic acid (PAAc) in the first network. DNHGs with varying sizes of ASNPs (50, 100, and 150 nm) and varying concentrations (2.5, 10, 20, and 40 wt %) were explored and compared to a control without a nanocomposite structure. Compressive strengths improved from 0.10 MPa for the control to a maximum of 1.28 MPa for the PAAc/PAAm DNHGs. All hydrogels experienced increased resistance to strain with a maximum of 74% compared to 45% for the control. SEM images of freeze-dried gels showed that ASNPs were integrated into the gel mesh. Nanoparticle retention was calculated using thermal gravimetric analysis (TGA) with improved retention values for larger ASNPs. New DNHG composites have been formed with improved mechanical properties and a potential use in tissue engineering and biomaterial applications.

13.
Immun Inflamm Dis ; 10(12): e701, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36444620

RESUMEN

BACKGROUND: Covid-19 is considered a primary respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury and acute respiratory distress syndrome (ARDS). In addition, though, extra-pulmonary manifestations of Covid-19 have been shown. Furthermore, severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) infection may coexist with several malignancies, including multiple myeloma (MM). METHODS: This critical literature review aimed to find the potential association between SARS-CoV-2 infection and MM in Covid-19 patients with underlying MM. Narrative literature and databases search revealed that ARDS is developed in both MM and Covid-19 due to hypercalcemia and proteasome dysfunction. RESULTS: Notably, the expression of angiogenic factors and glutamine deficiency could link Covid-19 severity and MM in the pathogenesis of cardiovascular complications. MM and Covid-19 share thrombosis as a typical complication; unlike thrombosis in Covid-19, which reflects disease severity, thrombosis does not reflect disease severity in MM. In both conditions, thromboprophylaxis is essential to prevent pulmonary thrombosis and other thromboembolic disorders. Moreover, Covid-19 may exacerbate the development of acute kidney injury and neurological complications in MM patients. CONCLUSION: These findings highlighted that MM patients might be a risk group for Covid-19 severity due to underlying immunosuppression and most of those patients need specific management in the Covid-19 era.


Asunto(s)
COVID-19 , Mieloma Múltiple , Síndrome de Dificultad Respiratoria , Tromboembolia Venosa , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Mieloma Múltiple/complicaciones , Anticoagulantes
14.
J Dent ; 127: 104296, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116542

RESUMEN

OBJECTIVES: To assess whether the dissolution products of S53P4 bioactive glass (BG) affect cellular response of macrophages and clinically relevant peri­implant cell populations to dental implant particles in vitro. Cells chosen were human gingival fibroblasts (HGFs), osteoblasts and bone marrow derived stromal cells (HBMSCs). METHODS: Melt-derived S53P4 bioactive glass were prepared. HGFs, Saos-2 human osteoblastic cell line, HBMSCs and macrophages, derived from THP-1 human monocytic cell line, were cultured in the presence of particles from commercially pure titanium (Ti-CP4), grade 5 titanium alloy (Ti-6Al-4V), titanium-zirconium alloy (Ti-15Zr) or zirconia (Zr) (with respective diameters of 34.1 ± 3.8, 33.3 ± 4.4, 97.8 ± 8.2 and 71.3 ± 6.1 µm) with or without S53P4 dissolution products (conditioned media contained 327.30 ± 2.01 ppm Ca, 51.34 ± 0.41 ppm P and 61.48 ± 1.17 ppm Si, pH 8.01 ± 0.21). Inflammatory and macrophage polarisation markers including TNF-ɑ, IL-1, IL-6 and CD206 were quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS: The presence of Ti-6Al-4V implant particles significantly induced the expression of pro-inflammatory markers in all tested cell types. S53P4 BG dissolution products regressed the particle induced up-regulation of pro-inflammatory markers and, appeared to suppress M1 macrophage polarisation. CONCLUSIONS: Implant particles, Ti-6Al-4V in particular, resulted in significant inflammatory responses from cells. S53P4 BG may possess anti-inflammatory properties and potentially mediate macrophage polarisation behaviour. CLINICAL SIGNIFICANCE: The findings highlight that the use and benefits of BG is a promising field of study. Authors believe more collective efforts are required to fully understand the reliability, efficiency and exact mechanisms of action of BG in the search for new generation of treatment modalities in dentistry.


Asunto(s)
Aleaciones , Titanio , Humanos , Titanio/farmacología , Reproducibilidad de los Resultados , Propiedades de Superficie , Materiales Dentales/farmacología , Materiales Biocompatibles , Antiinflamatorios
15.
Radiography (Lond) ; 28(2): 518-523, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34848136

RESUMEN

INTRODUCTION: Selection of optimal image acquisition protocols in medical imaging remains a grey area, the superimposed use of the Likert scale in radiological image quality evaluations creates an additional challenge for the statistical analysis of image quality data. Using a simulation study, we have trialled a novel approach to analysing radiological image quality Likert scale data. METHODS: A simulation study was undertaken where simulated datasets were generated based on the distribution of Likert scale values according to varying image acquisition protocols from a real dataset. Simulated Likert scale values were pooled in four different ways; the mean, median, mode and the summation of patient Likert scale values of which the total was assigned a categorical Likert scale value. Estimates of bias, MAPE and RMSPE were then calculated for all four pooling approaches to determine which method most accurately represented an expert's opinion. RESULTS: When compared to an expert's opinion, the method of summation and categorisation of Likert scale values was most accurate 49 times out of the 114 (43.0%) tests. The mean 28 times out of 114 (24.6%), the median 23 times out of 114 (20.2%) and the mode 17 times out of 114 (14.9%). CONCLUSION: We conclude that our method of summation and categorisation of Likert scale values is most often the best representation of the simulated data compared to the expert's opinion. IMPLICATIONS FOR PRACTICE: There is scope to reproduce this simulation study with multiple observers to reflect clinical reality more accurately with the dynamic nature of multiple observers. This also prompts future investigation into other anatomical areas, to see if the same methods produce similar results.


Asunto(s)
Radiología , Humanos , Radiografía
16.
Polymers (Basel) ; 13(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34372103

RESUMEN

An innovative beam concept made from hollow FRP tube with external flanges and filled with crumbed rubber concrete was investigated with respect to bending and shear. The performance of the rubberised-concrete-filled specimens was then compared with hollow and normal-concrete-filled tubes. A comparison between flanged and non-flanged hollow and concrete-filled tubes was also implemented. Moreover, finite element simulation was conducted to predict the fundamental behaviour of the beams. The results showed that concrete filling slightly improves bending performance but significantly enhances the shear properties of the beam. Adding 25% of crumb rubber in concrete marginally affects the bending and shear performance of the beam when compared with normal-concrete-filled tubes. Moreover, the stiffness-to-FRP weight ratio of a hollow externally flanged round tube is equivalent to that of a concrete-filled non-flanged round tube. The consideration of the pair-based contact surface between an FRP tube and infill concrete in linear finite element modelling predicted the failure loads within a 15% margin of difference.

17.
J Mater Chem B ; 8(14): 2834-2844, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32175544

RESUMEN

A novel auto-catalytic reaction, a combination of naturally occurring enzyme glucose oxidase (GOx) and amine-functionalised cerium oxide nanoparticles (nanoceria), was employed for open vessel free radical polymerisation of double network hydrogels (DNHGs). The nanoceria also incorporated into the gels to enhance mechanical strength. GOx reduces atmospheric O2 to H2O2, causing a cyclic change of cerium ion states, resulting in propagating free radicals in the carbon group in the amino functionalised nanoceria surface. We synthesised novel nanocomposite DNHGs by grafting polymers onto amine-functionalised nanoceria (ANC), with poly(2-acrylamido-2-methylpropanesulfonic acid), PAMPS, and polyacrylamide (PAAm) in the first and second networks respectively. The graft polymerisation was initiated using the alternating cerium states on the ANC. GOx held two major roles within the reaction: to provide an oxygen free system, without any other form of degassing, and to provide cyclical cerium ion states between Ce4+ and Ce3+, creating new free radicals for polymerisation. Polymer conversion using ANC as the sole initiator in the presence of GOx resulted in 83% conversion for PAMPS and 64% PAAm. Polymers degassed only with argon resulted in less than 55% conversion for both PAAm and PAMPS, proving that the addition of GOx enhanced the reaction. The new gels (1.76 MPa) showed an order of magnitude improvement in mechanical properties compared to DNHG made without ANC/GOx (0.10 MPa).


Asunto(s)
Aminas/química , Glucosa Oxidasa/química , Hidrogeles/síntesis química , Nanopartículas/química , Catálisis , Glucosa Oxidasa/metabolismo , Hidrogeles/química , Hidrogeles/metabolismo , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula , Polimerizacion , Propiedades de Superficie
18.
Biomater Sci ; 8(16): 4458-4466, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32100748

RESUMEN

We report that 3-D printed scaffold channel size can direct bone marrow derived stem cell differentiation. Treatment of articular cartilage trauma injuries, such as microfracture surgery, have limited success because durability is limited as fibrocartilage forms. A scaffold-assisted approach, combining microfracture with biomaterials has potential if the scaffold can promote articular cartilage production and share load with cartilage. Here, we investigated human bone marrow derived stromal cell (hBMSC) differentiation in vitro in 3-D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) hybrid scaffolds with specific channel sizes. Channel widths of ∼230 µm (210 ± 22 µm mean strut size, 42.4 ± 3.9% porosity) provoked hBMSC differentiation down a chondrogenic path, with collagen Type II matrix prevalent, indicative of hyaline cartilage. When pores were larger (∼500 µm, 229 ± 29 µm mean strut size, 63.8 ± 1.6% porosity) collagen Type I was dominant, indicating fibrocartilage. There was less matrix and voids in smaller channels (∼100 µm, 218 ± 28 µm mean strut size, 31.2 ± 2.9% porosity). Our findings suggest that a 200-250 µm pore channel width, in combination with the surface chemistry and stiffness of the scaffold, is optimal for cell-cell interactions to promote chondrogenic differentiation and enable the chondrocytes to maintain their phenotype.


Asunto(s)
Cartílago Articular , Andamios del Tejido , Diferenciación Celular , Condrocitos , Condrogénesis , Humanos , Porosidad , Dióxido de Silicio , Ingeniería de Tejidos
19.
ACS Omega ; 5(3): 1496-1505, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32010823

RESUMEN

The natural healing process for tendon repair is associated with high upregulation of collagen type III, leading to scar tissue and tendon adhesions with functionally deficient tendons. Gene delivery systems are widely reported as potential nanotherapeutics to treat diseases, providing a promising approach to modulate collagen type III synthesis. This work investigates a proof-of-concept four-arm cationic polymer-siRNA polyplex to mediate a transient downregulation of collagen type III expression in a tendon cell culture system. The tendon culture system was first supplemented with TGF-ß1 to stimulate the upregulation of collagen type III prior to silencing experiments. The four-arm poly[2-(dimethylamino) ethyl acrylate] (PDMAEA) polymer was successfully synthesized via RAFT polymerization and then mixed with siRNA to formulate the PDMAEA-siRNA polyplexes. The formation of the polyplex was optimized for the N:P ratio (10:1) and confirmed by agarose gel electrophoresis. The size and solution behavior of the polyplex were analyzed by dynamic light scattering and zeta potential, showing a hydrodynamic diameter of 155 ± 21 nm and overall positive charge of +30 mV at physiological pH. All the polyplex concentrations used had a minimal effect on the metabolic activity of cultured cells, indicating good biocompatibility. The dose and time effects of the TGF-ß1 on collagen type III gene expressions were analyzed by qPCR, showing an optimal dose of 10 ng mL-1 TGF-ß1 and 3-fold increase of COL3α1 expression at 48 h in cultured tenocytes. The PDMAEA-siRNA polyplex concept observed a limited yet successful and promising efficiency in silencing collagen type III at 48 h compared to PEI-siRNA. Therefore, this concept is a promising approach to reduce tissue scarring and adhesion following injuries.

20.
Data Brief ; 28: 104902, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31909097

RESUMEN

After the epidemic disease and the violence, the traffic injuries in Iraq has become a massive threat that menace the lives of the citizens and plagued the number of victims in Iraq after 2003. Iraq is seeing a catastrophic growth in the number of the traffic injuries reaching a high level during the previous ten years. Datasets results for the previous 10 years in Iraq were collected in this study. The data was arranged into spreadsheets creating a useful database for the prospectus studies. Classification of the traffic injuries was performed according to the number of fatalities, the number of injuries, and the number of accidents. Overall, traffic accidents were drastically growing from 2005 to 2017. In additional, the number of accidents recorded a relatively higher rate of accidents in a month with about 9%. However, the highest rates were observed during 2014, 2015, 2016 and 2017 consecutively. It may be attributed to the absence of security and safety precautions procedures. The number of injuries was as high was 12% and it increased during 2014, 2015, 2016 and 2017 respectively. whereas the number of fatalities recorded the highest number during 2017 with a ratio about 21%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...