Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790313

RESUMEN

Background: Stroke is a major cause of morbidity and mortality, and its incidence increases with age. While acute therapies for stroke are currently limited to intravenous thrombolytics and endovascular thrombectomy, recent studies have implicated an important role for the gut microbiome in post-stroke neuroinflammation. After stroke, several immuno-regulatory pathways, including the aryl hydrocarbon receptor (AHR) pathway, become activated. AHR is a master regulatory pathway that mediates neuroinflammation. Among various cell types, microglia (MG), as the resident immune cells of the brain, play a vital role in regulating post-stroke neuroinflammation and antigen presentation. Activation of AHR is dependent on a dynamic balance between host-derived and microbiota-derived ligands. While previous studies have shown that activation of MG AHR by host-derived ligands, such as kynurenine, is detrimental after stroke, the effects of post-stroke changes in microbiota-derived ligands of AHR, such as indoles, is unknown. Our study builds on the concept that differential activation of MG AHR by host-derived versus microbiome-derived metabolites affects outcomes after ischemic stroke. We examined the link between stroke-induced dysbiosis and loss of essential microbiota-derived AHR ligands. We hypothesize that restoring the balance between host-derived (kynurenine) and microbiota-derived (indoles) ligands of AHR is beneficial after stroke, offering a new potential avenue for therapeutic intervention in post-stroke neuroinflammation. Method: We performed immunohistochemical analysis of brain samples from stroke patients to assess MG AHR expression after stroke. We used metabolomics analysis of plasma samples from stroke and non-stroke control patients with matched comorbidities to determine the levels of indole-based AHR ligands after stroke. We performed transient middle cerebral artery occlusion (MCAO) in aged (18 months) wild-type (WT) and germ-free (GF) mice to investigate the effects of post-stroke treatment with microbiota-derived indoles on outcome. To generate our results, we employed a range of methodologies, including flow cytometry, metabolomics, and 16S microbiome sequencing. Results: We found that MG AHR expression is increased in human brain after stroke and after ex vivo oxygen-glucose deprivation and reperfusion (OGD/R). Microbiota-derived ligands of AHR are decreased in the human plasma at 24 hours after ischemic stroke. Kynurenine and indoles exhibited differential effects on aged WT MG survival after ex vivoOGD/R. We found that specific indole-based ligands of AHR (indole-3-propionic acid and indole-3-aldehyde) were absent in GF mice, thus their production depends on the presence of a functional gut microbiota. Additionally, a time-dependent decrease in the concentration of these indole-based AHR ligands occurred in the brain within the first 24 hours after stroke in aged WT mice. Post-stroke treatment of GF mice with a cocktail of microbiota-derived indole-based ligands of AHR regulated MG-mediated neuroinflammation and molecules involved in antigen presentation (increased CD80, MHC-II, and CD11b). Post-stroke treatment of aged WT mice with microbiota-derived indole-based ligands of AHR reduced both infarct volume and neurological deficits at 24 hours. Conclusion: Our novel findings provide compelling evidence that the restoration of a well-balanced pool of host-derived kynurenine-based and microbiota-derived indole-based ligands of AHR holds considerable therapeutic potential for the treatment of ischemic stroke.

2.
J Neuroinflammation ; 20(1): 232, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817190

RESUMEN

INTRODUCTION: Acute stroke leads to the activation of myeloid cells. These cells express adhesion molecules and transmigrate to the brain, thereby aggravating injury. Chronically after stroke, repair processes, including angiogenesis, are activated and enhance post-stroke recovery. Activated myeloid cells express CD13, which facilitates their migration into the site of injury. However, angiogenic blood vessels which play a role in recovery also express CD13. Overall, the specific contribution of CD13 to acute and chronic stroke outcomes is unknown. METHODS: CD13 expression was estimated in both mice and humans after the ischemic stroke. Young (8-12 weeks) male wild-type and global CD13 knockout (KO) mice were used for this study. Mice underwent 60 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. For acute studies, the mice were euthanized at either 24- or 72 h post-stroke. For chronic studies, the Y-maze, Barnes maze, and the open field were performed on day 7 and day 28 post-stroke. Mice were euthanized at day 30 post-stroke and the brains were collected for assessment of inflammation, white matter injury, tissue loss, and angiogenesis. Flow cytometry was performed on days 3 and 7 post-stroke to quantify infiltrated monocytes and neutrophils and CXCL12/CXCR4 signaling. RESULTS: Brain CD13 expression and infiltrated CD13+ monocytes and neutrophils increased acutely after the stroke. The brain CD13+lectin+ blood vessels increased on day 15 after the stroke. Similarly, an increase in the percentage area CD13 was observed in human stroke patients at the subacute time after stroke. Deletion of CD13 resulted in reduced infarct volume and improved neurological recovery after acute stroke. However, CD13KO mice had significantly worse memory deficits, amplified gliosis, and white matter damage compared to wild-type animals at chronic time points. CD13-deficient mice had an increased percentage of CXCL12+cells but a reduced percentage of CXCR4+cells and decreased angiogenesis at day 30 post-stroke. CONCLUSIONS: CD13 is involved in the trans-migration of monocytes and neutrophils after stroke, and acutely, led to decreased infarct size and improved behavioral outcomes. However, loss of CD13 led to reductions in post-stroke angiogenesis by reducing CXCL12/CXCR4 signaling.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Masculino , Animales , Ratones , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Ratones Noqueados , Movimiento Celular , Ratones Endogámicos C57BL , Isquemia Encefálica/metabolismo
3.
J Immunol ; 209(2): 288-300, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35732342

RESUMEN

Recent studies have highlighted the deleterious contributions of B cells to post-stroke recovery and cognitive decline. Different B cell subsets have been proposed on the basis of expression levels of transcription factors (e.g., T-bet) as well as specific surface proteins. CD11b (α-chain of integrin) is expressed by several immune cell types and is involved in regulation of cell motility, phagocytosis, and other essential functions of host immunity. Although B cells express CD11b, the CD11bhigh subset of B cells has not been well characterized, especially in immune dysregulation seen with aging and after stroke. Here, we investigate the role of CD11bhigh B cells in immune responses after stroke in young and aged mice. We evaluated the ability of CD11bhigh B cells to influence pro- and anti-inflammatory phenotypes of young and aged microglia (MG). We hypothesized that CD11bhigh B cells accumulate in the brain and contribute to neuroinflammation in aging and after stroke. We found that CD11bhigh B cells are a heterogeneous subpopulation of B cells predominantly present in naive aged mice. Their frequency increases in the brain after stroke in young and aged mice. Importantly, CD11bhigh B cells regulate MG phenotype and increase MG phagocytosis in both ex vivo and in vivo settings, likely by production of regulatory cytokines (e.g., TNF-α). As both APCs and adaptive immune cells with long-term memory function, B cells are uniquely positioned to regulate acute and chronic phases of the post-stroke immune response, and their influence is subset specific.


Asunto(s)
Microglía , Accidente Cerebrovascular , Animales , Linfocitos B/metabolismo , Antígeno CD11b/metabolismo , Recuento de Células , Citocinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Accidente Cerebrovascular/metabolismo
4.
Nat Chem Biol ; 18(3): 305-312, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34969973

RESUMEN

The bacterial domain produces numerous types of sphingolipids with various physiological functions. In the human microbiome, commensal and pathogenic bacteria use these lipids to modulate the host inflammatory system. Despite their growing importance, their biosynthetic pathway remains undefined since several key eukaryotic ceramide synthesis enzymes have no bacterial homolog. Here we used genomic and biochemical approaches to identify six proteins comprising the complete pathway for bacterial ceramide synthesis. Bioinformatic analyses revealed the widespread potential for bacterial ceramide synthesis leading to our discovery of a Gram-positive species that produces ceramides. Biochemical evidence demonstrated that the bacterial pathway operates in a different order from that in eukaryotes. Furthermore, phylogenetic analyses support the hypothesis that the bacterial and eukaryotic ceramide pathways evolved independently.


Asunto(s)
Ceramidas , Esfingolípidos , Bacterias/genética , Bacterias/metabolismo , Vías Biosintéticas , Ceramidas/química , Ceramidas/metabolismo , Humanos , Filogenia , Esfingolípidos/química , Esfingolípidos/metabolismo
5.
Aging (Albany NY) ; 12(9): 8049-8066, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32365331

RESUMEN

Growth differentiation factor (GDF) 11 levels decline with aging. The age-related loss of GDF 11 has been implicated in the pathogenesis of a variety of age-related diseases. GDF11 supplementation reversed cardiac hypertrophy, bone loss, and pulmonary dysfunction in old mice, suggesting that GDF11 has a rejuvenating effect. Less is known about the potential of GDF11 to improve recovery after an acute injury, such as stroke, in aged mice. GDF11/8 levels were assessed in young and aged male mice and in postmortem human brain samples. Aged mice were subjected to a transient middle cerebral artery occlusion (MCAo). Five days after MCAo, mice received and bromodeoxyuridine / 5-Bromo-2'-deoxyuridine (BrdU) and either recombinant GDF11 or vehicle for five days and were assessed for recovery for one month following stroke. MRI was used to determine cerebrospinal fluid (CSF) volume, corpus callosum (CC) area, and brain atrophy at 30 days post-stroke. Immunohistochemistry was used to assess gliosis, neurogenesis, angiogenesis and synaptic density. Lower GDF11/8 levels were found with age in both mice and humans (p<0.05). GDF11 supplementation reduced mortality and improved sensorimotor deficits after stroke. Treatment also reduced brain atrophy and gliosis, increased angiogenesis, improved white matter integrity, and reduced inflammation after stroke. GDF11 may have a role in brain repair after ischemic injury.


Asunto(s)
Envejecimiento , Proteínas Morfogenéticas Óseas/farmacocinética , Encéfalo/metabolismo , Factores de Diferenciación de Crecimiento/farmacocinética , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Recuperación de la Función/efectos de los fármacos , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/mortalidad , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...