Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 4(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34272328

RESUMEN

Heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) is a tumor suppressor protein that binds site- and structure-specifically to RNA sequences to regulate mRNA stability, facilitate alternative splicing, and suppress protein translation on several metastasis-associated mRNAs. Here, we show that hnRNP E1 binds polycytosine-rich DNA tracts present throughout the genome, including those at promoters of several oncogenes and telomeres and monitors genome integrity. It binds DNA in a site- and structure-specific manner. hnRNP E1-knockdown cells displayed increased DNA damage signals including γ-H2AX at its binding sites and also showed increased mutations. UV and hydroxyurea treatment of hnRNP E1-knockdown cells exacerbated the basal DNA damage signals with increased cell cycle arrest, activation of checkpoint proteins, and monoubiquitination of proliferating cell nuclear antigen despite no changes in deubiquitinating enzymes. DNA damage caused by genotoxin treatment localized to hnRNP E1 binding sites. Our work suggests that hnRNP E1 facilitates functions of DNA integrity proteins at polycytosine tracts and monitors DNA integrity at these sites.


Asunto(s)
Sitios de Unión , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Inestabilidad Genómica , Poli C , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , ADN/química , ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Humanos , Ratones , Modelos Biológicos , Mutación , Tasa de Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Poli C/química , Unión Proteica , Transducción de Señal
2.
Mol Cell Biol ; 40(12)2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32205408

RESUMEN

Defects in the spindle assembly checkpoint (SAC) can lead to aneuploidy and cancer. Sphingolipids have important roles in many cellular functions, including cell cycle regulation and apoptosis. However, the specific mechanisms and functions of sphingolipids in cell cycle regulation have not been elucidated. Using analysis of concordance for synthetic lethality for the yeast sphingolipid phospholipase ISC1, we identified two groups of genes. The first comprises genes involved in chromosome segregation and stability (CSM3, CTF4, YKE2, DCC1, and GIM4) as synthetically lethal with ISC1 The second group, to which ISC1 belongs, comprises genes involved in the spindle checkpoint (BUB1, MAD1, BIM1, and KAR3), and they all share the same synthetic lethality with the first group. We demonstrate that spindle checkpoint genes act upstream of Isc1, and their deletion phenocopies that of ISC1 Reciprocally, ISC1 deletion mutants were sensitive to benomyl, indicating a SAC defect. Similar to BUB1 deletion, ISC1 deletion prevents spindle elongation in hydroxyurea-treated cells. Mechanistically, PP2A-Cdc55 ceramide-activated phosphatase was found to act downstream of Isc1, thus coupling the spindle checkpoint genes and Isc1 to CDC55-mediated nuclear functions.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Proteína Fosfatasa 2/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fosfolipasas de Tipo C/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Eliminación de Gen , Redes Reguladoras de Genes , Genes Fúngicos , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Fosfolipasas de Tipo C/metabolismo
3.
Oncogene ; 38(20): 3794-3811, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30692635

RESUMEN

FAM3C/Interleukin-like EMT Inducer (ILEI) is an oncogenic member of the FAM3 cytokine family and serves essential roles in both epithelial-mesenchymal transition (EMT) and breast cancer metastasis. ILEI expression levels are regulated through a non-canonical TGFß signaling pathway by 3'-UTR-mediated translational silencing at the mRNA level by hnRNP E1. TGFß stimulation or silencing of hnRNP E1 increases ILEI translation and induces an EMT program that correlates with enhanced invasion and migration. Recently, EMT has been linked to the formation of breast cancer stem cells (BCSCs) that confer both tumor cell heterogeneity as well as chemoresistant properties. Herein, we demonstrate that hnRNP E1 knockdown significantly shifts normal mammary epithelial cells to mesenchymal BCSCs in vitro and in vivo. We further validate that modulating ILEI protein levels results in the abrogation of these phenotypes, promoting further investigation into the unknown mechanism of ILEI signaling that drives tumor progression. We identify LIFR as the receptor for ILEI, which mediates signaling through STAT3 to drive both EMT and BCSC formation. Reduction of either ILEI or LIFR protein levels results in reduced tumor growth, fewer tumor initiating cells and reduced metastasis within the hnRNP E1 knock-down cell populations in vivo. These results reveal a novel ligand-receptor complex that drives the formation of BCSCs and represents a unique target for the development of metastatic breast cancer therapies.


Asunto(s)
Neoplasias de la Mama/patología , Citocinas/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Proteínas de Neoplasias/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Autorrenovación de las Células , Proteínas de Unión al ADN , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Transición Epitelial-Mesenquimal/genética , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos NOD , Proteínas de Unión al ARN , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
4.
J Biol Chem ; 293(29): 11401-11414, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29871931

RESUMEN

Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.


Asunto(s)
Citocinas/genética , Melanoma/genética , Invasividad Neoplásica/genética , Proteínas de Neoplasias/genética , Activación Transcripcional , Factores Estimuladores hacia 5'/genética , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/patología , Ratones , Invasividad Neoplásica/patología , Regulación hacia Arriba
5.
Proc Natl Acad Sci U S A ; 113(26): E3639-48, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298353

RESUMEN

Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1-Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2-7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2-7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2-7 had to be phosphorylated for binding to phospho-Tof1-Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2-7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1-Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1-Ter complex.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 44(12): 5892-907, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27067543

RESUMEN

Non-canonical transforming growth factor ß (TGFß) signaling through protein kinase B (Akt2) induces phosphorylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) at serine-43 (p-hnRNP E1). This post-translational modification (PTM) of hnRNP E1 promotes its dissociation from a 3' untranslated region (UTR) nucleic acid regulatory motif, driving epithelial to mesenchymal transition (EMT) and metastasis. We have identified an hnRNP E1 consensus-binding motif and genomically resolved a subset of genes in which it is contained. This study characterizes the binding kinetics of the consensus-binding motif and hnRNP E1, its various K-homology (KH) domains and p-hnRNP E1. Levels of p-hnRNP E1 are highly upregulated in metastatic cancer cells and low in normal epithelial tissue. We show a correlation between this PTM and levels of Akt2 and its activated form, phosphorylated serine-474 (p-Akt2). Using cellular progression models of metastasis, we observed a signature high level of Akt2, p-Akt2 and p-hnRNP E1 protein expression, coupled to a significantly reduced level of total hnRNP E1 in metastatic cells. Genes that are translationally silenced by hnRNP E1 and expressed by its dissociation are highly implicated in the progression of EMT and metastasis. This study provides insight into a non-canonical TGFß signaling cascade that is responsible for inducing EMT by aberrant expression of hnRNP E1 silenced targets. The relevance of this system in metastatic progression is clearly shown in cellular models by the high abundance of p-hnRNP E1 and low levels of hnRNP E1. New insights provided by the resolution of this molecular mechanism provide targets for therapeutic intervention and give further insight into the role of the TGFß microenvironment.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/genética , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/genética , Factor de Crecimiento Transformador beta/genética , Regiones no Traducidas 3' , Secuencia de Bases , Sitios de Unión , Células CACO-2 , Línea Celular Tumoral , Proteínas de Unión al ADN , Células HCT116 , Células HT29 , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Metástasis de la Neoplasia , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
7.
Mol Cell Biol ; 36(10): 1451-63, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26951198

RESUMEN

The NAD-dependent histone deacetylase Sir2 controls ribosomal DNA (rDNA) silencing by inhibiting recombination and RNA polymerase II-catalyzed transcription in the rDNA of Saccharomyces cerevisiae Sir2 is recruited to nontranscribed spacer 1 (NTS1) of the rDNA array by interaction between the RENT ( RE: gulation of N: ucleolar S: ilencing and T: elophase exit) complex and the replication terminator protein Fob1. The latter binds to its cognate sites, called replication termini (Ter) or replication fork barriers (RFB), that are located in each copy of NTS1. This work provides new mechanistic insights into the regulation of rDNA silencing and intrachromatid recombination by showing that Sir2 recruitment is stringently regulated by Fob1 phosphorylation at specific sites in its C-terminal domain (C-Fob1), which also regulates long-range Ter-Ter interactions. We show further that long-range Fob1-mediated Ter-Ter interactions in trans are downregulated by Sir2. These regulatory mechanisms control intrachromatid recombination and the replicative life span (RLS).


Asunto(s)
Cromátides/genética , ADN Ribosómico/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/química , Sirtuina 2/metabolismo
8.
PLoS One ; 10(9): e0137696, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26368004

RESUMEN

RNA and its associated RNA binding proteins (RBPs) mitigate a diverse array of cellular functions and phenotypes. The interactions between RNA and RBPs are implicated in many roles of biochemical processing by the cell such as localization, protein translation, and RNA stability. Recent discoveries of novel mechanisms that are of significant evolutionary advantage between RBPs and RNA include the interaction of the RBP with the 3' and 5' untranslated region (UTR) of target mRNA. These mechanisms are shown to function through interaction of a trans-factor (RBP) and a cis-regulatory element (3' or 5' UTR) by the binding of a RBP to a regulatory-consensus nucleic acid motif region that is conserved throughout evolution. Through signal transduction, regulatory RBPs are able to temporarily dissociate from their target sites on mRNAs and induce translation, typically through a post-translational modification (PTM). These small, regulatory motifs located in the UTR of mRNAs are subject to a loss-of-function due to single polymorphisms or other mutations that disrupt the motif and inhibit the ability to associate into the complex with RBPs. The identification of a consensus motif for a given RBP is difficult, time consuming, and requires a significant degree of experimentation to identify each motif-containing gene on a genomic scale. We have developed a computational algorithm to analyze high-throughput genomic arrays that contain differential binding induced by a PTM for a RBP of interest-RBP-PTM Target Scan (RPTS). We demonstrate the ability of this application to accurately predict a PTM-specific binding motif to an RBP that has no antibody capable of distinguishing the PTM of interest, negating the use of in-vitro exonuclease digestion techniques.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN , Análisis de Secuencia de Proteína/métodos , Secuencias de Aminoácidos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Nucleic Acids Res ; 42(18): e138, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063300

RESUMEN

To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general.


Asunto(s)
Ontología de Genes , Redes Reguladoras de Genes , Teorema de Bayes , Genes Fúngicos , Redes y Vías Metabólicas/genética , PubMed , Esfingolípidos/metabolismo , Levaduras/genética , Levaduras/metabolismo
10.
J Biol Chem ; 288(24): 17272-84, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23620586

RESUMEN

Recent studies showed that deletion of ISC1, the yeast homologue of the mammalian neutral sphingomyelinase, resulted in an increased sensitivity to hydroxyurea (HU). This raised an intriguing question as to whether sphingolipids are involved in pathways initiated by HU. In this study, we show that HU treatment led to a significant increase in Isc1 activity. Analysis of sphingolipid deletion mutants and pharmacological analysis pointed to a role for ceramide in mediating HU resistance. Lipid analysis revealed that HU induced increases in phytoceramides in WT cells but not in isc1Δ cells. To probe functions of specific ceramides, we developed an approach to supplement the medium with fatty acids. Oleate (C18:1) was the only fatty acid protecting isc1Δ cells from HU toxicity in a ceramide-dependent manner. Because phytoceramide activates protein phosphatases in yeast, we evaluated the role of CDC55, the regulatory subunit of ceramide-activated protein phosphatase PP2A. Overexpression of CDC55 overcame the sensitivity to HU in isc1Δ cells. However, addition of oleate did not protect the isc1Δ,cdc55Δ double mutant from HU toxicity. These results demonstrate that HU launches a lipid pathway mediated by a specific sphingolipid, C18:1-phytoceramide, produced by Isc1, which provides protection from HU by modulating Swe1 levels through the PP2A subunit Cdc55.


Asunto(s)
Ceramidas/fisiología , Farmacorresistencia Fúngica , Hidroxiurea/farmacología , Ácidos Oléicos/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Estabilidad de Enzimas , Técnicas de Inactivación de Genes , Metabolismo de los Lípidos , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
11.
FEMS Yeast Res ; 12(8): 949-57, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22909099

RESUMEN

In the ribosomal DNA (rDNA) array of Saccharomyces cerevisiae, DNA replication is arrested by the Fob1 protein in a site-specific manner that stimulates homologous recombination. The silent information regulator Sir2, which is loaded at the replication arrest sites by Fob1, suppresses this recombination event. A plasmid containing Fob1-binding sites, when propagated in a yeast strain lacking SIR2 is integrated into the yeast chromosome in a FOB1-dependent manner. We show that addition of nicotinamide (NAM) to the culture medium can stimulate such plasmid integration in the presence of SIR2. Pulsed-field gel electrophoresis analysis showed that plasmid integration occurred into chromosome XII. NAM-induced plasmid integration was dependent on FOB1 and on the homologous recombination gene RAD52. As NAM inhibits several sirtuins, we examined plasmid integration in yeast strains containing deletions of various sirtuin genes and observed that plasmid integration occurred only in the absence of SIR2, but not in the absence of other histone deacetylases. In the absence of PNC1 that metabolizes NAM, a reduced concentration of NAM was required to induce plasmid integration in comparison with that required in wild-type cells. This study suggests that NAD metabolism and intracellular NAM concentrations are important in Fob1-mediated rDNA recombination.


Asunto(s)
Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Niacinamida/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicación del ADN/efectos de los fármacos , ADN de Hongos/efectos de los fármacos , ADN Ribosómico/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Campo Pulsado , Silenciador del Gen/efectos de los fármacos , Plásmidos/genética , Recombinación Genética/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo
12.
Front Microbiol ; 3: 187, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22783238

RESUMEN

The fungal pathogen Cryptococcus neoformans (Cn) is a serious threat to immunocompromised individuals, especially for HIV patients who develop meningoencephalitis. For effective cryptococcal treatment, novel antifungal drugs or innovative combination therapies are needed. Recently, sphingolipids have emerged as important bioactive molecules in the regulation of microbial pathogenesis. Previously we reported that the sphingolipid pathway gene, ISC1, which is responsible for ceramide production, is a major virulence factor in Cn infection. Here we report our studies of the role of ISC1 during genotoxic stress induced by the antineoplastic hydroxyurea (HU) and methyl methanesulfonate (MMS), which affect DNA replication and genome integrity. We observed that Cn cells lacking ISC1 are highly sensitive to HU and MMS in a rich culture medium. HU affected cell division of Cn cells lacking the ISC1 gene, resulting in cell clusters. Cn ISC1, when expressed in a Saccharomyces cerevisiae (Sc) strain lacking its own ISC1 gene, restored HU resistance. In macrophage-like cells, although HU affected the proliferation of wild type (WT) Cn cells by 50% at the concentration tested, HU completely inhibited Cn isc1Δ cell proliferation. Interestingly, our preliminary data show that mice infected with WT or Cn isc1Δ cells and subsequently treated with HU had longer lifespans than untreated, infected control mice. Our work suggests that the sphingolipid pathway gene, ISC1, is a likely target for combination therapy with traditional drugs such as HU.

13.
Genetics ; 189(2): 533-47, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21840863

RESUMEN

In Saccharomyces cerevisiae, replication stress induced by hydroxyurea (HU) and methyl methanesulfonate (MMS) activates DNA integrity checkpoints; in checkpoint-defective yeast strains, HU treatment also induces morphological aberrations. We find that the sphingolipid pathway gene ISC1, the product of which catalyzes the generation of bioactive ceramides from complex sphingolipids, plays a novel role in determining cellular morphology following HU/MMS treatment. HU-treated isc1Δ cells display morphological aberrations, cell-wall defects, and defects in actin depolymerization. Swe1, a morphogenesis checkpoint regulator, and the cell cycle regulator Cdk1 play key roles in these morphological defects of isc1Δ cells. A genetic approach reveals that ISC1 interacts with other checkpoint proteins to control cell morphology. That is, yeast carrying deletions of both ISC1 and a replication checkpoint mediator gene including MRC1, TOF1, or CSM3 display basal morphological defects, which increase following HU treatment. Interestingly, strains with deletions of both ISC1 and the DNA damage checkpoint mediator gene RAD9 display reduced morphological aberrations irrespective of HU treatment, suggesting a role for RAD9 in determining the morphology of isc1Δ cells. Mechanistically, the checkpoint regulator Rad53 partially influences isc1Δ cell morphology in a dosage-dependent manner.


Asunto(s)
Daño del ADN , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fosfolipasas de Tipo C/genética , Actinas/metabolismo , Western Blotting , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Quitina/metabolismo , Reparación del ADN , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hidroxiurea/toxicidad , Metilmetanosulfonato/toxicidad , Microscopía Fluorescente , Mutágenos/toxicidad , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/toxicidad , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Fosfolipasas de Tipo C/metabolismo
14.
J Biol Chem ; 286(4): 2445-54, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21087929

RESUMEN

The intra-S phase checkpoint protein complex Tof1/Csm3 of Saccharomyces cerevisiae antagonizes Rrm3 helicase to modulate replication fork arrest not only at the replication termini of rDNA but also at strong nonhistone protein binding sites throughout the genome. We investigated whether these checkpoint proteins acted either antagonistically or synergistically with Rrm3 in mediating other important functions such as maintenance of genome stability. High retromobility of a normally quiescent retrovirus-like transposable element Ty1 of S. cerevisiae is a form of genome instability, because the transposition events induce mutations. We measured the transposition of Ty1 in various genetic backgrounds and discovered that Tof1 suppressed excessive retromobility in collaboration with either Rrm3 or the F-box protein Dia2. Although both Rrm3 and Dia2 are believed to facilitate fork movement, fork stalling at DNA-protein complexes did not appear to be a major contributor to enhancement of retromobility. Absence of the aforementioned proteins either individually or in pair-wise combinations caused karyotype changes as revealed by the altered migrations of the individual chromosomes in pulsed field gels. The mobility changes were RNase H-resistant and therefore, unlikely to have been caused by extensive R loop formation. These mutations also resulted in alterations of telomere lengths. However, the latter changes could not fully account for the magnitude of the observed karyotypic alterations. We conclude that unlike other checkpoint proteins that are known to be required for elevated retromobility, Tof1 suppressed high frequency retrotransposition and maintained karyotype stability in collaboration with the aforementioned proteins.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/metabolismo , Genoma Fúngico/fisiología , Inestabilidad Genómica/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN Helicasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas F-Box/genética , Retroelementos/fisiología , Fase S/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 285(17): 12612-9, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20179323

RESUMEN

The replication terminator protein Fob1 of Saccharomyces cerevisiae is multifunctional, and it not only promotes polar replication fork arrest at the tandem Ter sites located in the intergenic spacer region of rDNA but also loads the NAD-dependent histone deacetylase Sir2 at Ter sites via a protein complex called RENT (regulator of nucleolar silencing and telophase exit). Sir2 is a component of the RENT complex, and its loading not only silences intrachromatid recombination in rDNA but also RNA polymerase II-catalyzed transcription. Here, we present three lines of evidence showing that the two aforementioned activities of Fob1 are independent of each other as well as functionally separable. First, a Fob1 ortholog of Saccharomyces bayanus expressed in a fob1Delta strain of S. cerevisiae restored polar fork arrest at Ter but not rDNA silencing. Second, a mutant form (I407T) of S. cerevisiae Fob1 retained normal fork arresting activity but was partially defective in rDNA silencing. We further show that the silencing defect of S. bayanus Fob1 and the Iota407Tau mutant of S. cerevisiae Fob1 were caused by the failure of the proteins to interact with two members of the S. cerevisiae RENT complex, namely S. cerevisiae Sir2 and S. cerevisiae Net1. Third, deletions of the intra-S phase checkpoint proteins Tof1 and Csm3 abolished fork arrest by Fob1 at Ter without causing loss of silencing. Taken together, the data support the conclusion that unlike some other functions of Fob1, rDNA silencing at Ter is independent of fork arrest.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , ADN Intergénico/genética , ADN Intergénico/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Transcripción Genética/fisiología
16.
Eukaryot Cell ; 8(4): 487-95, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19234097

RESUMEN

The replication terminator protein Fob1 of Saccharomyces cerevisiae specifically interacts with two tandem Ter sites (replication fork barriers) located in the nontranscribed spacer of ribosomal DNA (rDNA) to cause polar fork arrest. The Fob1-Ter complex is multifunctional and controls other DNA transactions such as recombination by multiple mechanisms. Here, we report on the regulatory roles of the checkpoint proteins in the initiation and progression of recombination at Fob1-Ter complexes. The checkpoint adapter proteins Tof1 and Csm3 either positively or negatively controlled recombination depending on whether it was provoked by polar fork arrest or by transcription, respectively. The absolute requirements for these proteins for inducing recombination at an active replication terminus most likely masked their negative modulatory role at a later step of the process. Other checkpoint proteins of the checkpoint adapter/mediator class such as Mrc1 and Rad9, which channel signals from the sensor to the effector kinase, tended to suppress recombination at Fob1-Ter complexes regardless of how it was initiated. We have also discovered that the checkpoint sensor kinase Mec1 and the effector Rad53 were positive modulators of recombination initiated by transcription but had little effect on recombination at Ter. The work also showed that the two pathways were Rad52 dependent but Rad51 independent. Since Ter sites occur in the intergenic spacer of rDNA from yeast to humans, the mechanism is likely to be of widespread occurrence.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
J Biol Chem ; 284(13): 8241-6, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19158081

RESUMEN

Saccharomyces cerevisiae cells lacking ISC1 (inositol phosphosphingolipase C) exhibit sensitivity to genotoxic agents such as methyl methanesulfonate and hydroxyurea (HU). Cell cycle analysis by flow cytometry revealed a G(2)/M block in isc1Delta cells when treated with methyl methanesulfonate or HU. Further investigation revealed that the levels of Cdc28 phosphorylated on Tyr-19, which plays an essential role in the regulation of the G(2)/M checkpoint, were higher in synchronized and asynchronous cells lacking ISC1 in response to HU. Use of a Cdc28-Y19F mutant protected isc1Delta from the G(2)/M block. In wild type cells, HU induced a loss of the Swe1p kinase, the enzyme that phosphorylates Cdc28-Tyr-19, correlating with resumption of the cell cycle. In the isc1Delta cells, however, the levels of Swe1p remained at sustained high levels in response to HU. Significantly, deletion of SWE1 in an isc1Delta background overcame the G(2)/M block in response to HU. The double isc1Delta/swe1Delta mutant also overcame the growth defect on HU. Taken together, these findings implicate Isc1p as an upstream regulator of Swe1p levels and stability and Cdc28-Tyr-19 phosphorylation, in effect signaling recovery from the effects of genotoxic stress and allowing G(2)/M progression.


Asunto(s)
Antineoplásicos/farmacología , División Celular/efectos de los fármacos , Fase G2/efectos de los fármacos , Hidroxiurea/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Fase G2/fisiología , Técnicas de Inactivación de Genes , Mesilatos/farmacología , Mutación , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Fosfolipasas de Tipo C/genética
18.
Proc Natl Acad Sci U S A ; 103(4): 897-902, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16418273

RESUMEN

Termination of replication forks at the natural termini of the rDNA of Saccharomyces cerevisiae is controlled in a sequence-specific and polar mode by the interaction of the Fob1p replication terminator protein with the tandem Ter sites located in the nontranscribed spacers. Here we show, by both 2D gel analyses and chromatin immunoprecipitations (ChIP), that there exists a second level of global control mediated by the intra-S-phase checkpoint protein complex of Tof1p and Csm3p that protect stalled forks at Ter sites against the activity of the Rrm3p helicase ("sweepase"). The sweepase tends to release arrested forks presumably by the transient displacement of the Ter-bound Fob1p. Consistent with this mechanism, very few replication forks were arrested at the natural replication termini in the absence of the two checkpoint proteins. In the absence of the Rrm3p helicase, there was a slight enhancement of fork arrest at the Ter sites. Simultaneous deletions of the TOF1 (or CSM3), and the RRM3 genes restored fork arrest by removing both the fork-releasing and fork-protection activities. Other genes such as MRC1, WSS1, and PSY2 that are also involved in the MRC1 checkpoint pathway were not involved in this global control. This observation suggests that Tof1p-Csm3p function differently from MRC1 and the other above-mentioned genes. This mechanism is not restricted to the natural Ter sites but was also observed at fork arrest caused by the meeting of a replication fork with transcription approaching from the opposite direction.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Autorradiografía , Proteínas de Ciclo Celular/química , Inmunoprecipitación de Cromatina , ADN Helicasas/química , ADN Helicasas/fisiología , Replicación del ADN , ADN Ribosómico/química , Proteínas de Unión al ADN , Electroforesis en Gel Bidimensional , Inmunoprecipitación , Modelos Genéticos , Plásmidos/metabolismo , Mapeo de Interacción de Proteínas , Fase S , Proteínas de Saccharomyces cerevisiae/química , Transcripción Genética
19.
J Biol Chem ; 279(3): 1932-41, 2004 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-14576157

RESUMEN

Fob1p protein has been implicated in the termination of replication forks at the two tandem termini present in the non-transcribed spacer region located between the sequences encoding the 35 S and the 5 S RNAs of Saccharomyces cerevisiae. However, the biochemistry and mode of action of this protein were previously unknown. We have purified the Fob1p protein to near-homogeneity, and we developed a novel technique to show that it binds specifically to the Ter1 and Ter2 sequences. Interestingly, the two sequences share no detectable homology. We present two lines of evidence showing that the interaction of the Fob1p with the Ter sites causes replication termination. First, a mutant of FOB1, L104S, that significantly reduced the binding of the mutant form of the protein to the tandem Ter sites, also failed to promote replication termination in vivo. The mutant did not diminish nucleolar transport, and interaction of the mutant form of Fob1p with itself and with another protein encoded in the locus YDR026C suggested that the mutation did not cause global misfolding of the protein. Second, DNA site mutations in the Ter sequences that separately and specifically abolished replication fork arrest at Ter1 or Ter2 also eliminated sequence-specific binding of the Fob1p to the two sites. The work presented here definitively established Ter DNA-Fob1p interaction as an important step in fork arrest.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Elementos de Facilitación Genéticos , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Nucléolo Celular/química , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...