Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339656

RESUMEN

This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber-physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient's Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle's Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient's gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient's BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time.


Asunto(s)
Inteligencia Artificial , Cadena de Bloques , Humanos , Seguridad Computacional , Computadores , Atención a la Salud/métodos
2.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112453

RESUMEN

Due to the enormous amounts of data being generated between users, Intelligent Transportation Systems (ITS) are complex Cyber-Physical Systems that necessitate a reliable and safe infrastructure. Internet of Vehicles (IoV) is the term that describes the interconnection for every single node, device, sensor, and actuator that are Internet enabled, whether attached or unattached to vehicles. A single smart vehicle will generate a huge amount of data. Concurrently, it needs an instant response to avoid accidents since vehicles are fast-moving objects. In this work, we explore Distributed Ledger Technology (DLT) and collect data about consensus algorithms and their applicability to be used in the IoV as the backbone of ITS. Multiple distributed ledger networks are currently in operation. Some are used in finance or supply chains, and others are used for general decentralized applications. Despite the secure and decentralized nature of the blockchain, each of these networks has trade-offs and compromises. Based on the analysis of consensus algorithms, a conclusion has been made to design one that fits the requirements of ITS-IOV. FlexiChain 3.0 is proposed in this work to serve as a Layer0 network for different stakeholders in the IoV. A time analysis has been conducted and shows a capacity of 2.3 transactions per second, which is an acceptable speed to be used in IoV. Moreover, a security analysis was conducted as well and shows high security and high independence of the node number in terms of security level per the number of participants.

3.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36433322

RESUMEN

Groundwater overuse in different domains will eventually lead to global freshwater scarcity. To meet the anticipated demands, many governments worldwide are employing innovative and traditional techniques for forecasting groundwater availability by conducting research and studies. One challenging step for this type of study is collecting groundwater data from different sites and securely sending it to the nearby edges without exposure to hacking and data tampering. In the current paper, we send raw data formats from the Internet of Things to the Distributed Data Storage (DDS) and Blockchain (BC) edges. We use a distributed and decentralized architecture to store the statistics, perform double hashing, and implement access control through smart contracts. This work demonstrates a modern and innovative approach combining DDS and BC technologies to overcome traditional data sharing, and centralized storage, while addressing blockchain limitations. We have shown performance improvements with increased data quality and integrity.


Asunto(s)
Cadena de Bloques , Agua Subterránea , Exactitud de los Datos , Seguridad Computacional , Almacenamiento y Recuperación de la Información
4.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36365923

RESUMEN

It is a known fact that large quantities of farm and meat products rot and are wasted if correct actions are not taken, which may lead to serious health issues if consumed. There is no proper system for tracking and communicating the status of the goods to their respective stakeholders in a secure way. Consumers have every right to know the quality of the products they consume. Using monitoring tools, such as the Internet of Agricultural Things (IoAT), and modern data protection techniques for storing and sharing, will help mitigate data integrity issues during the transmission of sensor records, increasing the data quality. The visibility state at the customer end is also improved, and they are aware of the agricultural product's conditions throughout the real-time distribution process. In this paper, we developed and implemented a CorDapp application to manage the data for the supply chain, called "agroString". We collected the temperature and humidity data using IoAT-Edge devices and various datasets from multiple sources. We then sent those readings to the CorDapp agroString and successfully shared them among the relevant parties. With the help of a Corda private blockchain, we attempted to increase data integrity, trust, visibility, provenance, and quality at each logistic step, while decreasing blockchain and central system limitations.


Asunto(s)
Cadena de Bloques , Internet de las Cosas , Seguridad Computacional , Publicaciones , Confianza
5.
SN Comput Sci ; 3(5): 344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755326

RESUMEN

This article presents the first-ever hardware-assisted blockchain for simultaneously handling device and data security in smart healthcare. This article presents the hardware security primitive physical unclonable functions (PUF) and blockchain technology together as PUFchain 2.0 with a two-level authentication mechanism. The proposed PUFchain 2.0 security primitive presents a scalable approach by allowing Internet of Medical Things (IoMT) devices to connect and obtain PUF keys from the edge server with an embedded PUF module instead of connecting a PUF module to each device. The PUF key, once assigned to a particular media access control (MAC) address by the miner, will be unique for that MAC address and cannot be assigned to other devices. PUFs are developed based on internal micro-manufacturing process variations during chip fabrication. This property of PUFs is integrated with blockchain by including the PUF key of the IoMT into blockchain for authentication. The robustness of the proposed Proof of PUF-Enabled authentication consensus mechanism in PUFchain 2.0 has been substantiated through test bed evaluation. Arbiter PUFs have been used for the experimental validation of PUFchain 2.0. From the obtained 200 PUF keys, 75% are reliable and the Hamming distance of the PUF module is 48%. Obtained database outputs along with other metrics have been presented for validating the potential of PUFchain 2.0 in smart healthcare.

6.
SN Comput Sci ; 3(2): 150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35132394

RESUMEN

The pandemic of novel Coronavirus Disease 2019 (COVID-19) is widespread all over the world causing serious health problems as well as serious impact on the global economy. Reliable and fast testing of the COVID-19 has been a challenge for researchers and healthcare practitioners. In this work, we present a novel machine learning (ML) integrated X-ray device in Healthcare Cyber-Physical System (H-CPS) or smart healthcare framework (called "CoviLearn") to allow healthcare practitioners to perform automatic initial screening of COVID-19 patients. We propose convolutional neural network (CNN) models of X-ray images integrated into an X-ray device for automatic COVID-19 detection. The proposed CoviLearn device will be useful in detecting if a person is COVID-19 positive or negative by considering the chest X-ray image of individuals. CoviLearn will be useful tool doctors to detect potential COVID-19 infections instantaneously without taking more intrusive healthcare data samples, such as saliva and blood. COVID-19 attacks the endothelium tissues that support respiratory tract, and X-rays images can be used to analyze the health of a patient's lungs. As all healthcare centers have X-ray machines, it could be possible to use proposed CoviLearn X-rays to test for COVID-19 without the especial test kits. Our proposed automated analysis system CoviLearn which has 98.98% accuracy will be able to save valuable time of medical professionals as the X-ray machines come with a drawback as it needed a radiology expert.

7.
J Signal Process Syst ; 94(6): 595-608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34664014

RESUMEN

The recent COVID-19 outbreak highlighted the requirement for a more sophisticated healthcare system and real-time data analytics in the pandemic mitigation process. Moreover, real-time data plays a crucial role in the detection and alerting process. Combining smart healthcare systems with accurate real-time information about medical service availability, vaccination, and how the pandemic is spreading can directly affect the quality of life and economy. The existing architecture models are become inadequate in handling the pandemic mitigation process using real-time data. The present models are server-centric and controlled by a single party, where the management of confidentiality, integrity, and availability (CIA) of data is doubtful. Therefore, a decentralised user-centric model is necessary, where the CIA of user data is assured. In this paper, we have suggested a decentralized blockchain-based pandemic detection and assistance system (iBlock). The iBlock uses robust technologies like hybrid computing and IPFS to support system functionality. A pseudo-anonymous personal identity is introduced using H-PCS and cryptography for anonymous data sharing. The distributed data management module guarantees data CIA, security, and privacy using cryptography mechanisms. Furthermore, it delivers useful intelligent information in the form of suggestions and alerts to assist the users. Finally, the iBlock reduces stress on healthcare infrastructure and workers by providing accurate predictions and early warnings using AI/ML.

8.
SN Comput Sci ; 2(5): 346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179827

RESUMEN

With the world facing the new virus SARS-CoV-2, many countries have introduced instant Internet applications to identify people carrying the infection. Internet-of-Medical-Things (IoMT) have proven useful in collecting medical data as well in tracing an individual carrying the virus. The data collected or traced belongs to an individual and should be revealed to themselves and hospital providers, but not to any third-party unauthorized agencies. In this paper we use an off-chain distributed storage solution for loading large medical data sets and a blockchain implementation to securely transfer the data from the infected person to the hospital system using the edge infrastructure, and call it CoviChain. The Coronavirus Disease (COVID-19) statistics are loaded on to the edge, and moved to InterPlanetary File Systems (IPFS) storage to retrieve the hash of the data file. Once the hash is obtained, it is moved to the blockchain by means of smart contracts. As the information is being hashed twice, CoviChain addresses the security and privacy issues and avoid exposing individuals' data while achieving larger data storage on the blockchain with reduced cost and time.

9.
IEEE Trans Nanobioscience ; 19(4): 609-621, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763857

RESUMEN

This paper proposes two differential detection techniques for signal detection in mobile molecular communication (MMC) for targeted drug delivery (TDD) application. In MMC, a nano-transmitter and a nano-receiver are considered to be in Brownian motion in an extracellular fluid medium. Transmitter uses calcium molecules to communicate with the receiver. Detection is performed using concentration difference based detector (CDD) at the receiver which calculates the maximum absolute concentration difference of the received signal within the same bit interval to detect the bit. This improves the bit error rate (BER) performance in MMC. The performance is further enhanced using manchester coded transmission with differential detection (MCD). In MCD, Bit-1 is coded by the symbol [1 0] and Bit-0 is coded by the symbol [0 1] and the difference between peaks of signals received in consecutive bit duration is taken to detect the bit. Simulation results prove that the MCD technique is 3 dB less sensitive to inter symbol interference (ISI) than the CDD technique. The detection threshold is selected using maximum a posteriori probability (MAP) rule. The performance of these detectors is compared with other existing detection techniques. Results reveal that BER performance of the CDD and MCD better by at least 3 dB and 6 dB, respectively. The proposed CDD and MCD techniques perform better in different bit-sequence length, various initial distance and different bit duration than other existing techniques.


Asunto(s)
Computadores Moleculares , Sistemas de Liberación de Medicamentos/métodos , Nanotecnología/métodos , Simulación por Computador , Relación Señal-Ruido
10.
IEEE Trans Nanobioscience ; 16(6): 383-399, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28715334

RESUMEN

Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.


Asunto(s)
Diseño Asistido por Computadora , Computadores Moleculares , ADN/química , Modelos Químicos , Procesamiento de Señales Asistido por Computador/instrumentación , Simulación por Computador , ADN/ultraestructura , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Modelos Genéticos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...