Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 28(12): 7105-7116, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34867013

RESUMEN

Acaudina molpadioides has been long used as traditional medicinal resources and reported to demonstrate various important bioactivities such as anticoagulation, antithrombosis, anti-hyperglycemia and anticancer. However, its lipid lowering activity is yet to be fully explored. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that enhances the lysosomal degradation of hepatic low density lipoprotein receptor (LDLR) resulting in excessive accumulation of the plasma levels of LDL-cholesterols (LDL-C) which subsequently accelerate atherosclerosis. In the present study, A. molpadioides fractions were subjected to promoter-reporter luciferase assay to determine its role as PCSK9 inhibitors. It was found both fractions (EFA and EFB) reduced the transcriptional activity of PCSK9 promoter. Among the seven 5'end deletion constructs of PCSK9 promoter, fragments D1 (-1,711/-94), D3 (-709/-94) and D4 (-440/-94), were suppressed in the presence of both fractions whereas D2 (-1,214/-94), and, D6 (-351/-94) as well as D7 (-335/-94) were inhibited only by EFA and EFB, respectively. Further transcription factor binding sites prediction using MatInspector software discovered various potential cis-regulatory elements namely, PPAR, KLFs, RBPJ-kappa and SREBP that may potentially be involved in ameliorating the transcriptional activity of PCSK9. Immunofluorescence staining was used to evaluate the effects of both fractions on LDL-C and LDLR. Results showed that levels of LDL-C uptake in EFA-treated cells were 69.1% followed by EFB at 32.6%, as compared to untreated control after 24 h treatment. The LDLR protein distribution was induced by 62.41% and 32.2%, which corresponded to an increase in LDL-C uptake in both EFA and EFB treatment, respectively. Hence, the inhibition of PCSK9 by bioactive compounds in EFA and EFB could be another promising therapeutic agent in reducing the cholesterol levels and atherosclerosis by targeting PCSK9.

2.
Mol Cell Endocrinol ; 505: 110702, 2020 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-31927097

RESUMEN

Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Regulación Neoplásica de la Expresión Génica , Interleucina-6/metabolismo , PPAR alfa/metabolismo , Proteínas Plasmáticas de Unión al Retinol/genética , Transcripción Genética , Sitios de Unión , Células Hep G2 , Humanos , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Elementos de Respuesta/genética , Proteínas Plasmáticas de Unión al Retinol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA