Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurochem Int ; 176: 105738, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616012

RESUMEN

Numerous clinical trials involving natural products have been conducted to observe cognitive performances and biomarkers in Alzheimer's Disease (AD) patients. However, to date, no natural-based drugs have been approved by the FDA as treatments for AD. In this review, natural product-based compounds that were tested in clinical trials from 2011 to 2023, registered at www.clinicaltrials.gov were reviewed. Thirteen compounds, encompassing 7 different mechanisms of action were covered. Several observations were deduced, which are: i) several compounds showed cognitive improvement, but these improvements may not extend to AD, ii) compounds that are endogenous to the human body showed better outcomes, and iii) Docosahexaenoic acid (DHA) and cerebrolysin had the most potential as AD drugs among the 13 compounds. Based on the current findings, natural products may be more suitable as a supplement than AD drugs in most cases. However, the studies covered here were conducted in a relatively short amount of time, where compounds acting on AD pathways may take time to show any effect. Given the diverse pathways that these natural products are involved in, they may potentially produce synergistic effects that would be beneficial in treating AD. Additionally, natural products benefit from both physicochemical properties being in more favorable ranges and active transport playing a more significant role than it does for synthetic compounds.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales
2.
Nutr Cancer ; 76(5): 404-418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38546174

RESUMEN

Cachexia is an irreversible condition that involves a significant loss of body weight, muscle mass, and adipose tissue. It is a complex condition that involves a variety of metabolic, hormonal, and immune-related factors, with the precise mechanisms not yet fully understood. In this review, the prevalence of cachexia in different types of cancer as well as the potential risk factors was evaluated from literature retrieved from databases such as ScienceDirect, PubMed and Scopus. Potential risk factors evaluated here include tumor-related factors such as location, and stage of the cancer, as well as patient-related factors such as age, gender, and comorbidities. Several findings were observed where cachexia is more prevalent in male cancer patients than females, with higher incidences of weight loss and poorer outcomes. This may be due to the different muscle compositions between gender. Additionally, cachexia is more prevalent at the later stages, which may be brought about by the late-stage diagnosis of certain cancers. The anatomical location of certain cancers such as the pancreas and stomach may play a significant factor in their high prevalence of cachexia. These are sites of the synthesis of digestive enzymes and hormones regulating appetite. Cachexia is an issue faced by cancer patients which could affect their recovery. However, it is poorly understood, which limit therapeutic options. Hence, understanding this disease from different perspectives (clinical and pre-clinical), and bridging those findings could further improve our comprehension and consequently improve therapeutic options.


Asunto(s)
Caquexia , Neoplasias , Femenino , Humanos , Masculino , Caquexia/epidemiología , Caquexia/etiología , Prevalencia , Neoplasias/metabolismo , Tejido Adiposo/metabolismo , Factores de Riesgo
3.
ACS Omega ; 8(36): 32483-32497, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37720780

RESUMEN

Dengue virus (DENV) infection is one of the most widely spread flavivirus infections. Despite the fatality it could cause, no antiviral treatment is currently available to treat the disease. Hence, this study aimed to repurpose old drugs as novel DENV NS3 inhibitors. Ligand-based (L-B) and proteochemometric (PCM) prediction models were built using 62,354 bioactivity data to screen for potential NS3 inhibitors. Selected drugs were then subjected to the foci forming unit reduction assay (FFURA) and protease inhibition assay. Finally, molecular docking was performed to validate these results. The in silico studies revealed that both models performed well in the internal and external validations. However, the L-B model showed better accuracy in the external validation in terms of its sensitivity (0.671). In the in vitro validation, all drugs (zileuton, trimethadione, and linalool) were able to moderately inhibit the viral activities at the highest concentration tested. Zileuton showed comparable results with linalool when tested at 2 mM against the DENV NS3 protease, with a reduction of protease activity at 17.89 and 18.42%, respectively. Two new compounds were also proposed through the combination of the selected drugs, which are ziltri (zilueton + trimethadione) and zilool (zileuton + linalool). The molecular docking study confirms the in vitro observations where all drugs and proposed compounds were able to achieve binding affinity ≥ -4.1 kcal/mol, with ziltri showing the highest affinity at -7.7 kcal/mol, surpassing the control, panduratin A. The occupation of both S1 and S2 subpockets of NS2B-NS3 may be essential and a reason for the lower binding energy shown by the proposed compounds compared to the screened drugs. Based on the results, this study provided five potential new lead compounds (ziltri, zilool, zileuton, linalool, and trimethadione) for DENV that could be modified further.

4.
Curr Opin Struct Biol ; 80: 102588, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028096

RESUMEN

With the availability of public databases that store compound-target/compound-toxicity information, and Traditional Chinese medicine (TCM) databases, in silico approaches are used in toxicity studies of TCM herbal medicine. Here, three in silico approaches for toxicity studies were reviewed, which include machine learning, network toxicology and molecular docking. For each method, its application and implementation e.g., single classifier vs. multiple classifier, single compound vs. multiple compounds, validation vs. screening, were explored. While these methods provide data-driven toxicity prediction that is validated in vitro and/or in vivo, it is still limited to single compound analysis. In addition, these methods are limited to several types of toxicity, with hepatotoxicity being the most dominant. Future studies involving the testing of combination of compounds on the front end i.e., to generate data for in silico modeling, and back end i.e., validate findings from prediction models will advance the in silico toxicity modeling of TCM compounds.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/toxicidad , Simulación del Acoplamiento Molecular , Simulación por Computador , Aprendizaje Automático
5.
Front Chem ; 10: 874615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832462

RESUMEN

Drug development in Alzheimer's disease (AD) suffers from a high attrition rate. In 2021, 117 agents tested in phases I and II and 36 agents tested in phase III were discontinued. Natural product compounds may be good lead compounds for AD as they contain functional groups that are important for binding against key AD targets such as ß-secretase enzyme (BACE1). Hence, in this study, 64 flavonoids collected from rigorous literature search and screening that have been tested from 2010 to 2022 against BACE1, which interferes in the formation of amyloid plaque, were analyzed. The 64 unique flavonoids can be further classified into five core fragments. The flavonoids were subjected to clustering analysis based on its structure, and each representative of the clusters was subjected to molecular docking. There were 12 clusters formed, where only 1 cluster contained compounds from two different core fragments. Several observations can be made where 1) flavanones with sugar moieties showed higher inhibitory activity compared to flavanones without sugar moieties. The number of sugar moieties and position of glycosidic linkage may also affect the inhibitory activity. 2) Non-piperazine-substituted chalcones when substituted with functional groups with decreasing electronegativity at the para position of both rings result in a decrease in inhibitory activity. Molecular docking indicates that ring A is involved in hydrogen bond, whereas ring B is involved in van der Waals interaction with BACE1. 3) Hydrogen bond is an important interaction with the catalytic sites of BACE1, which are Asp32 and Asp228. As flavonoids contain favorable structures and properties, this makes them an interesting lead compound for BACE1. However, to date, no flavonoids have made it through clinical trials. Hence, these findings may aid in the design of highly potent and specific BACE1 inhibitors, which could delay the progression of AD.

6.
Molecules ; 24(6)2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871159

RESUMEN

Antibiotic resistance is a problem that continues to challenge the healthcare sector, especially in clinically significant pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Herein is described the isolation and structure elucidation of a bioactive compound from Allium stipitatum with antimicrobial activity. Crude Allium stipitatum dichloromethane extract (ASDE) was subjected to systematic purification by chromatographic procedures to afford various bioactive fractions. A fraction that exhibited anti-MRSA activity (4 µg·mL-1) was further characterized to determine the structure. The structure of the compound was elucidated as 2-(methyldithio)pyridine-3-carbonitrile (2-Medpy-3-CN). The 2-Medpy-3-CN compound, which was screened for antimicrobial activity, exhibited minimum inhibitory concentrations (MICs) in the range of 0.5 to >64 µg·mL-1 for tested bacterial species and 0.25 to 2 µg·mL-1 for Candida spp. Further studies are important to confirm the drug target and mechanism of action.


Asunto(s)
Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Piridinas/química , Chalotes/química , Antibacterianos/farmacología , Candida/efectos de los fármacos , Fraccionamiento Químico , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitrilos/química , Nitrilos/aislamiento & purificación , Fitoquímicos/análisis , Piridinas/aislamiento & purificación , Piridinas/farmacología
7.
Ann Clin Microbiol Antimicrob ; 17(1): 46, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30593272

RESUMEN

BACKGROUND: Osteomyelitis is an acute or chronic inflammatory process of the bone following infection with pyogenic organisms like Staphylococcus aureus. Tobramycin (TOB) is a promising aminoglycoside antibiotic used to treat various bacterial infections, including S. aureus. The aim of this study was to investigate the efficacy of tobramycin-loaded calcium phosphate beads (CPB) in a rabbit osteomyelitis model. METHODS: Tobramycin (30 mg/mL) was incorporated into CPB by dipping method and the efficacy of TOB-loaded CPB was studied in a rabbit osteomyelitis model. For juxtaposition, CPB with and without TOB were prepared. Twenty-five New Zealand white rabbits were grouped (n = 5) as sham (group 1), TOB-loaded CPB without S. aureus (group 2), S. aureus only (group 3), S. aureus + CPB (group 4), and S. aureus + TOB-loaded CPB (group 5). Groups infected with S. aureus followed by CPB implantation were immediately subjected to surgery at the mid-shaft of the tibia. After 28 days post-surgery, all rabbits were euthanized and the presence or absence of chronic osteomyelitis and the extent of architectural destruction of the bone were assessed by radiology, bacteriology and histological studies. RESULTS: Tobramycin-loaded CPB group potentially inhibited the growth of S. aureus causing 3.2 to 3.4 log10 reductions in CFU/g of bone tissue compared to the controls. Untreated groups infected with S. aureus showed signs of chronic osteomyelitis with abundant bacterial growth and alterations in bone architecture. The sham group and TOB-loaded CPB group showed no evidence of bacterial growth. CONCLUSIONS: TOB-incorporated into CPB for local bone administration was proven to be more successful in increasing the efficacy of TOB in this rabbit osteomyelitis model and hence could represent a good alternative to other formulations used in the treatment of osteomyelitis.


Asunto(s)
Antibacterianos/administración & dosificación , Fosfatos de Calcio/química , Sistemas de Liberación de Medicamentos/métodos , Osteomielitis/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Tobramicina/administración & dosificación , Animales , Antibacterianos/química , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/instrumentación , Humanos , Masculino , Conejos , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Tobramicina/química
8.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563117

RESUMEN

Gestational diabetes mellitus (GDM) carries many risks, where high blood pressure, preeclampsia and future type II diabetes are widely acknowledged, but less focus has been placed on its effect on cognitive function. Although the multifactorial pathogenesis of maternal cognitive impairment is not completely understood, it shares several features with type 2 diabetes mellitus (T2DM). In this review, we discuss some key pathophysiologies of GDM that may lead to cognitive impairment, specifically hyperglycemia, insulin resistance, oxidative stress, and neuroinflammation. We explain how these incidents: (i) impair the insulin-signaling pathway and/or (ii) lead to cognitive impairment through hyperphosphorylation of τ protein, overexpression of amyloid-ß and/or activation of microglia. The aforementioned pathologies impair the insulin-signaling pathway primarily through serine phosphorylation of insulin receptor substances (IRS). This then leads to the inactivation of the phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling cascade, which is responsible for maintaining brain homeostasis and normal cognitive functioning. PI3K/AKT is crucial in maintaining normal cognitive function through the inactivation of glycogen synthase kinase 3ß (GSκ3ß), which hyperphosphorylates τ protein and releases pro-inflammatory cytokines that are neurotoxic. Several biomarkers were also highlighted as potential biomarkers of GDM-related cognitive impairment such as AGEs, serine-phosphorylated IRS-1 and inflammatory markers such as tumor necrosis factor α (TNF-α), high-sensitivity C-reactive protein (hs-CRP), leptin, interleukin 1ß (IL-1ß), and IL-6. Although GDM is a transient disease, its complications may be long-term, and hence increased mechanistic knowledge of the molecular changes contributing to cognitive impairment may provide important clues for interventional strategies.


Asunto(s)
Disfunción Cognitiva/metabolismo , Diabetes Gestacional/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/patología , Diabetes Gestacional/patología , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Microglía/metabolismo , Microglía/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
9.
Biomed Res Int ; 2018: 9845075, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30105271

RESUMEN

The present study assessed the in vitro antibacterial and antibiofilm potential of hexane (ASHE) and dichloromethane (ASDE) extracts of Allium stipitatum (Persian shallot) against planktonic cells and biofilm structures of clinically significant antibiotic resistant pathogens, with a special emphasis on methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and emerging pathogens, Acinetobacter baumannii and Stenotrophomonas maltophilia. Antibacterial activities were determined through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill kinetics, and electron microscopy. Antibiofilm activity was assessed by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay and by confocal laser scanning microscopy (CLSM). The zone of inhibition ranged from 13 to 33 mm, while the MICs and MBCs ranged from 16 to 1024 µg mL-1. Both ASHE and ASDE completely eradicated overnight cultures of the test microorganisms, including antibiotic resistant strains. Time-kill studies showed that the extracts were strongly bactericidal against planktonic cultures of S. aureus, MRSA, Acinetobacter baumannii, and S. maltophilia as early as 4 hours postinoculation (hpi). ASHE and ASDE were shown to inhibit preformed biofilms of the four biofilm phenotypes tested. Our results demonstrate the potential therapeutic application of ASHE and ASDE to inhibit the growth of gram-positive and gram-negative biofilms of clinical significance and warrant further investigation of the potential of A. stipitatum bulbs against biofilm-related drug resistance.


Asunto(s)
Allium/química , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Extractos Vegetales/farmacología , Acinetobacter baumannii/efectos de los fármacos , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Stenotrophomonas maltophilia/efectos de los fármacos
10.
Asian Pac J Cancer Prev ; 18(4): 1169-1175, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28548470

RESUMEN

Background: ETV6/RUNX1 gene fusion is the most frequently seen chromosomal abnormality in childhood acute lymphobastic leukamia (ALL). However, additional genetic changes are known to be required for the development of this type of leukaemia. Therefore, we here aimed to assess the somatic mutational profile of four ALL cases carrying the ETV6/RUNX1 fusion gene using whole-exome sequencing. Methods: DNA was isolated from bone marrow samples using a QIAmp DNA Blood Mini kit and subsequently sequenced using the Illumina MiSeq system. Results: We identified 12,960 to17,601 mutations in each sample, with a total of 16,466 somatic mutations in total. Some 15,533 variants were single nucleotide polymorphisms (SNPs), 129 were substitutions, 415 were insertions and 389 were deletions. When taking into account the coding region and protein impact, 1,875 variants were synonymous and 1,956 were non-synonymous SNPs. Among non-synonymous SNPs, 1,862 were missense, 13 nonsense, 35 frameshifts, 11 nonstop, 3 misstart, 15 splices disrupt and 17 in-frame indels. A total of 86 variants were located in leukaemia-related genes of which 32 variants were located in the coding regions of GLI2, SP140, GATA2, SMAD5, KMT2C, CDH17, CDX2, FLT3, PML and MOV10L1. Conclusions: Detection and identification of secondary genetic alterations are important in identifying new therapeutic targets and developing rationally designed treatment regimens with less toxicity in ALL patients.

11.
J Ethnopharmacol ; 197: 61-72, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-27452659

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cassia auriculata (CA) is used as an antidiabetic therapy in Ayurvedic and Siddha practice. This study aimed to understand the mode-of-action of CA via combined cheminformatics and in vivo biological analysis. In particular, the effect of 10 polyphenolic constituents of CA in modulating insulin and immunoprotective pathways were studied. MATERIALS AND METHODS: In silico target prediction was first employed to predict the probability of the polyphenols interacting with key protein targets related to insulin signalling, based on a model trained on known bioactivity data and chemical similarity considerations. Next, CA was investigated in in vivo studies where induced type 2 diabetic rats were treated with CA for 28 days and the expression levels of genes regulating insulin signalling pathway, glucose transporters of hepatic (GLUT2) and muscular (GLUT4) tissue, insulin receptor substrate (IRS), phosphorylated insulin receptor (AKT), gluconeogenesis (G6PC and PCK-1), along with inflammatory mediators genes (NF-κB, IL-6, IFN-γ and TNF-α) and peroxisome proliferators-activated receptor gamma (PPAR-γ) were determined by qPCR. RESULTS: In silico analysis shows that several of the top 20 enriched targets predicted for the constituents of CA are involved in insulin signalling pathways e.g. PTPN1, PCK-α, AKT2, PI3K-γ. Some of the predictions were supported by scientific literature such as the prediction of PI3K for epigallocatechin gallate. Based on the in silico and in vivo findings, we hypothesized that CA may enhance glucose uptake and glucose transporter expressions via the IRS signalling pathway. This is based on AKT2 and PI3K-γ being listed in the top 20 enriched targets. In vivo analysis shows significant increase in the expression of IRS, AKT, GLUT2 and GLUT4. CA may also affect the PPAR-γ signalling pathway. This is based on the CA-treated groups showing significant activation of PPAR-γ in the liver compared to control. PPAR-γ was predicted by the in silico target prediction with high normalisation rate although it was not in the top 20 most enriched targets. CA may also be involved in the gluconeogenesis and glycogenolysis in the liver based on the downregulation of G6PC and PCK-1 genes seen in CA-treated groups. In addition, CA-treated groups also showed decreased cholesterol, triglyceride, glucose, CRP and Hb1Ac levels, and increased insulin and C-peptide levels. These findings demonstrate the insulin secretagogue and sensitizer effect of CA. CONCLUSION: Based on both an in silico and in vivo analysis, we propose here that CA mediates glucose/lipid metabolism via the PI3K signalling pathway, and influence AKT thereby causing insulin secretion and insulin sensitivity in peripheral tissues. CA enhances glucose uptake and expression of glucose transporters in particular via the upregulation of GLUT2 and GLUT4. Thus, based on its ability to modulate immunometabolic pathways, CA appears as an attractive long term therapy for T2DM even at relatively low doses.


Asunto(s)
Cassia/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , PPAR gamma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
12.
Biomed Res Int ; 2016: 9704607, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379252

RESUMEN

This study attempts to develop an experimental gestational diabetes mellitus (GDM) animal model in female Sprague-Dawley rats. Rats were fed with high fat sucrose diet, impregnated, and induced with Streptozotocin and Nicotinamide on gestational day 0 (D0). Sleeping patterns of the rats were also manipulated to induce stress, a lifestyle factor that contributes to GDM. Rats were tested for glycemic parameters (glucose, C-peptide, and insulin), lipid profiles (total cholesterol, triglycerides, HDL, and LDL), genes affecting insulin signaling (IRS-2, AKT-1, and PCK-1), glucose transporters (GLUT-2 and GLUT-4), proinflammatory cytokines (IL-6, TNF-α), and antioxidants (SOD, CAT, and GPX) on D6 and D21. GDM rats showed possible insulin resistance as evidenced by high expression of proinflammatory cytokines, PCK-1 and CRP. Furthermore, low levels of IRS-2 and AKT-1 genes and downregulation of GLUT-4 from the initial to final phases indicate possible defect of insulin signaling. GDM rats also showed an impairment of antioxidant status and a hyperlipidemic state. Additionally, GDM rats exhibited significantly higher body weight and blood glucose and lower plasma insulin level and C-peptide than control. Based on the findings outlined, the current GDM animal model closely replicates the disease state in human and can serve as a reference for future investigations.


Asunto(s)
Antioxidantes/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Gestacional/sangre , Resistencia a la Insulina/genética , Animales , Glucemia , Citocinas/sangre , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Gestacional/genética , Diabetes Gestacional/patología , Femenino , Regulación de la Expresión Génica , Humanos , Insulina/sangre , Embarazo , Ratas , Factores de Riesgo
13.
Artículo en Inglés | MEDLINE | ID: mdl-26989424

RESUMEN

Traditional Chinese medicine (TCM) still needs more scientific rationale to be proven for it to be accepted further in the West. We are now in the position to propose computational hypotheses for the mode-of-actions (MOAs) of 45 TCM therapeutic action (sub)classes from in silico target prediction algorithms, whose target was later annotated with Kyoto Encyclopedia of Genes and Genomes pathway, and to discover the relationship between them by generating a hierarchical clustering. The results of 10,749 TCM compounds showed 183 enriched targets and 99 enriched pathways from Estimation Score ≤ 0 and ≥ 5% of compounds/targets in a (sub)class. The MOA of a (sub)class was established from supporting literature. Overall, the most frequent top three enriched targets/pathways were immune-related targets such as tyrosine-protein phosphatase nonreceptor type 2 (PTPN2) and digestive system such as mineral absorption. We found two major protein families, G-protein coupled receptor (GPCR), and protein kinase family contributed to the diversity of the bioactivity space, while digestive system was consistently annotated pathway motif, which agreed with the important treatment principle of TCM, "the foundation of acquired constitution" that includes spleen and stomach. In short, the TCM (sub)classes, in many cases share similar targets/pathways despite having different indications.

14.
Hum Psychopharmacol ; 28(4): 365-78, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23881885

RESUMEN

OBJECTIVE: This study exemplifies computer-aided (in silico) approaches in assessing the risks of new psychoactive substances emerging in the European Union. In this work, we (i) consider the potential of Ostarine exhibiting psychoactivity and (ii) anticipate potential activities and toxicities of 4-methylamphetamine. METHOD: The approach, termed in silico target prediction, suggests potential protein targets modulated by compounds given their chemical structure. This is achieved by first establishing the associations between chemical structure and protein targets using data from the bioactivity database, ChEMBL, via the use of two different computational algorithms. On the basis of the associations, protein targets and consequently the mode of action of novel compounds were predicted. RESULTS: For Ostarine, none of the targets anticipated are currently known to elicit psychoactivity. Furthermore, Ostarine is unlikely to cross the blood-brain barrier to reach relevant target sites on the basis of its physicochemical properties. For 4-methylamphetamine, toxicities were anticipated, that is, serotonin syndrome (based on the prediction of SERT) and other effects similar to related substances, that is, methamphetamine. CONCLUSION: From the two case studies, we showed that in silico target prediction appears to have potential in assessing new psychoactive compounds where experimental data are scarce. The applicability domain of target predictions when applied to psychoactive compounds needs to be established in future work.


Asunto(s)
Amidas/efectos adversos , Inteligencia Artificial , Simulación por Computador , Metanfetamina/efectos adversos , Amidas/química , Anilidas , Humanos , Metanfetamina/química
15.
Chem Biol Drug Des ; 82(3): 252-66, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23647865

RESUMEN

Diversity selection is a frequently applied strategy for assembling high-throughput screening libraries, making the assumption that a diverse compound set increases chances of finding bioactive molecules. Based on previous work on experimental 'affinity fingerprints', in this study, a novel diversity selection method is benchmarked that utilizes predicted bioactivity profiles as descriptors. Compounds were selected based on their predicted activity against half of the targets (training set), and diversity was assessed based on coverage of the remaining (test set) targets. Simultaneously, fingerprint-based diversity selection was performed. An original version of the method exhibited on average 5% and an improved version on average 10% increase in target space coverage compared with the fingerprint-based methods. As a typical case, bioactivity-based selection of 231 compounds (2%) from a particular data set ('Cutoff-40') resulted in 47.0% and 50.1% coverage, while fingerprint-based selection only achieved 38.4% target coverage for the same subset size. In conclusion, the novel bioactivity-based selection method outperformed the fingerprint-based method in sampling bioactive chemical space on the data sets considered. The structures retrieved were structurally more acceptable to medicinal chemists while at the same time being more lipophilic, hence bioactivity-based diversity selection of compounds would best be combined with physicochemical property filters in practice.


Asunto(s)
Algoritmos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Alcaloides de Berberina/química , Alcaloides de Berberina/metabolismo , Biología Computacional , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , Proteínas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
16.
J Chem Inf Model ; 53(3): 661-73, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23351136

RESUMEN

Traditional Chinese medicine (TCM) and Ayurveda have been used in humans for thousands of years. While the link to a particular indication has been established in man, the mode-of-action (MOA) of the formulations often remains unknown. In this study, we aim to understand the MOA of formulations used in traditional medicine using an in silico target prediction algorithm, which aims to predict protein targets (and hence MOAs), given the chemical structure of a compound. Following this approach we were able to establish several links between suggested MOAs and experimental evidence. In particular, compounds from the 'tonifying and replenishing medicinal' class from TCM exhibit a hypoglycemic effect which can be related to activity of the ingredients against the Sodium-Glucose Transporters (SGLT) 1 and 2 as well as Protein Tyrosine Phosphatase (PTP). Similar results were obtained for Ayurvedic anticancer drugs. Here, both primary anticancer targets (those directly involved in cancer pathogenesis) such as steroid-5-alpha-reductase 1 and 2 were predicted as well as targets which act synergistically with the primary target, such as the efflux pump P-glycoprotein (P-gp). In addition, we were able to elucidate some targets which may point us to novel MOAs as well as explain side effects. Most notably, GPBAR1, which was predicted as a target for both 'tonifying and replenishing medicinal' and anticancer classes, suggests an influence of the compounds on metabolism. Understanding the MOA of these compounds is beneficial as it provides a resource for NMEs with possibly higher efficacy in the clinic than those identified by single-target biochemical assays.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Medicina Ayurvédica , Medicina Tradicional China , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Algoritmos , Antineoplásicos/farmacología , Inteligencia Artificial , Simulación por Computador , Bases de Datos Genéticas , Humanos , Hipoglucemiantes/farmacología , Plantas Medicinales/química , Plantas Medicinales/genética , Proteínas Tirosina Fosfatasas/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA