Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123743, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113556

RESUMEN

Trace and minor elements play crucial roles in a variety of biological processes, including amyloid fibrils formation. Mechanisms include activation or inhibition of enzymatic reactions, competition between elements and metal proteins for binding positions, also changes to the permeability of cellular membranes. These may influence carcinogenic processes, with trace and minor element concentrations in normal and amyloid tissues potentially aiding in cancer diagnosis and etiology. With the analytical capability of the spectroscopic technique X-ray fluorescence (XRF), this can be used to detect and quantify the presence of elements in amyloid characterization, two of the trace elements known to be associated with amyloid fibrils. In present work, involving samples from a total of 22 subjects, samples of normal and amyloid-containing tissues of heart, kidney, thyroid, and other tissue organs were obtained, analyzed via energy-dispersive X-ray fluorescence (EDXRF). The elemental distribution of potassium (K), calcium (Ca), arsenic (As), and iron (Fe) was examined in both normal and amyloidogenic tissues using perpetual thin slices. In amyloidogenic tissues the levels of K, Ca, and Fe were found to be less than in corresponding normal tissues. Moreover, the presence of As was only observed in amyloidogenic samples; in a few cases in which there was an absence of As, amyloid samples were found to contain Fe. Analysis of arsenic in amyloid plaques has previously been difficult, often producing contradictory results. Using the present EDXRF facility we could distinguish between amyloidogenic and normal samples, with potential correlations in respect of the presence or concentration of specific elements.


Asunto(s)
Arsénico , Oligoelementos , Humanos , Calcio/análisis , Espectrometría por Rayos X/métodos , Oligoelementos/análisis , Hierro/análisis
2.
Prog Biophys Mol Biol ; 182: 59-74, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37307955

RESUMEN

Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of ß-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Amiloide/química , Péptidos beta-Amiloides/química , Espectrometría Raman/métodos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteómica , Amiloidosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA