Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 680: 593-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20865544

RESUMEN

Electroencephalogram (EEG) serves as an extremely valuable tool for clinicians and researchers to study the activity of the brain in a non-invasive manner. It has long been used for the diagnosis of various central nervous system disorders like seizures, epilepsy, and brain damage and for categorizing sleep stages in patients. The artifacts caused by various factors such as Electrooculogram (EOG), eye blink, and Electromyogram (EMG) in EEG signal increases the difficulty in analyzing them. Discrete wavelet transform has been applied in this research for removing noise from the EEG signal. The effectiveness of the noise removal is quantitatively measured using Root Mean Square (RMS) Difference. This paper reports on the effectiveness of wavelet transform applied to the EEG signal as a means of removing noise to retrieve important information related to both healthy and epileptic patients. Wavelet-based noise removal on the EEG signal of both healthy and epileptic subjects was performed using four discrete wavelet functions. With the appropriate choice of the wavelet function (WF), it is possible to remove noise effectively to analyze EEG significantly. Result of this study shows that WF Daubechies 8 (db8) provides the best noise removal from the raw EEG signal of healthy patients, while WF orthogonal Meyer does the same for epileptic patients. This algorithm is intended for FPGA implementation of portable biomedical equipments to detect different brain state in different circumstances.


Asunto(s)
Electroencefalografía/estadística & datos numéricos , Algoritmos , Artefactos , Encéfalo/fisiología , Encéfalo/fisiopatología , Biología Computacional , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Humanos , Valores de Referencia , Procesamiento de Señales Asistido por Computador
2.
Biol Proced Online ; 8: 11-35, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16799694

RESUMEN

Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications.

3.
Biol Proced Online ; 8: 163, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-19565309

RESUMEN

This paper was originally published in Biological Procedures Online (BPO) on March 23, 2006. It was brought to the attention of the journal and authors that reference 74 was incorrect. The original citation for reference 74, "Stanford V. Biosignals offer potential for direct interfaces and health monitoring. Pervasive Computing, IEEE 2004; 3(1):99-103." should read "Costanza E, Inverso SA, Allen R. 'Toward Subtle Intimate Interfaces for Mobile Devices Using an EMG Controller' in Proc CHI2005, April 2005, Portland, OR, USA."

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...