Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(43): 40801-40807, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929140

RESUMEN

Modulation-doped CdTe quantum wells (QWs) with Cd0.7Mg0.3Te barriers were studied by photoluminescence (PL) and far-infrared Fourier spectroscopy under a magnetic field at 4.2 K and by Raman spectroscopy at room temperature. Two samples were tested: a sample which contained ten QWs (MQW) and a sample with one QW (SQW). The width of each QW was equal to 20 nm, and each of them was modulation-doped with iodine donors introduced in a 4 nm thick layer. The concentration of donors in each doped layer was nominally identical, but the thickness of the spacer in SQW and MQW samples was 20 and 10 nm, respectively. This resulted in a two times higher electron concentration per well in the MQW sample than in the SQW sample. We observed differences in PL from the two samples: the energy range of PL was different, and one observed phonon replicas in MQW which were absent in the SQW sample. An analysis of oscillations of the PL intensity as a function of magnetic field indicated that PL resulted from the recombination of free electrons in the conduction band with free or localized holes in the case of SQW and MQW samples, respectively.

2.
Nano Lett ; 23(20): 9587-9593, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823538

RESUMEN

Competition between exchange interactions and magnetocrystalline anisotropy may bring new magnetic states that are of great current interest. An applied hydrostatic pressure can further be used to tune their balance. In this work, we investigate the magnetization process of a biaxial antiferromagnet in an external magnetic field applied along the easy axis. We find that the single metamagnetic transition of the Ising type observed in this material under ambient pressure transforms under hydrostatic pressure into two transitions, a first-order spin-flop transition followed by a second-order transition toward a polarized ferromagnetic state near saturation. This reversible tuning into a new magnetic phase is obtained in layered bulk CrSBr at low temperature by varying the interlayer distance using high hydrostatic pressure, which efficiently acts on the interlayer magnetic exchange and is probed by magneto-optical spectroscopy.

3.
Inorg Chem ; 62(7): 3153-3161, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36744742

RESUMEN

The rational design of 3d-metal-based single-molecule magnets (SMM) requires a fundamental understanding of their intrinsic electronic and structural properties and how they translate into experimentally observable features. Here, we determined the magnetic properties of the linear iron(I) silylamides K{crypt}[FeL2] and [KFeL2] (L = -N(Dipp)SiMe3; crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosan). For the former, slow-relaxation of the magnetization with a spin reversal barrier of Ueff = 152 cm-1 as well as a closed-waist magnetic hysteresis and magnetic blocking below 2.5 K are observed. For the more linear [KFeL2], in which the potassium cation is encapsulated by the aryl substituents of the amide ligands, the relaxation barrier and the blocking temperature increase to Ueff = 184 cm-1 and TB = 4.5 K, respectively. The increase is rationalized by a more pronounced axial anisotropy in [KFeL2] determined by dc-SQUID magnetometry. The effective relaxation barrier of [KFeL2] is in agreement with the energy spacing between the ground and first-excited magnetic states, as obtained by field-dependent IR-spectroscopy (178 cm-1), magnetic measurements (208 cm-1), as well as theoretical analysis (212 cm-1). In comparison with the literature, the results show that magnetic coercivity in linear iron(I) silylamides is driven by the degree of linearity in conjunction with steric encumbrance, whereas the ligand symmetry is a marginal factor.

4.
Nano Lett ; 22(23): 9741-9747, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458929

RESUMEN

We report on magneto-optical studies of the quasi-two-dimensional van der Waals antiferromagnet FePS3. Our measurements reveal an excitation that closely resembles the antiferromagnetic resonance mode typical of easy-axis antiferromagnets; nevertheless, it displays an unusual, four-times larger Zeeman splitting in an applied magnetic field. We identify this excitation with an |Sz| = 4 multipolar magnon─a single-ion 4-magnon bound state─that corresponds to a full reversal of a single magnetic moment of the Fe2+ ion. We argue that condensation of multipolar magnons in large-spin materials with a strong magnetic anisotropy can produce new exotic states.

5.
Adv Sci (Weinh) ; 9(23): e2105720, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35713280

RESUMEN

Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...