Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39173627

RESUMEN

Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.

2.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38952796

RESUMEN

Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWAS) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. Integrating expression quantitative trait loci (eQTL), 3D chromatin structure, and other genomic approaches with OA GWAS data offers a promising approach to elucidate disease mechanisms; however, comprehensive eQTL maps in OA-relevant tissues and conditions remain scarce. We mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions. We identified thousands of differentially expressed genes, including those associated with differences in sex and age. RNA-seq in chondrocytes from 101 donors across two conditions uncovered 3782 unique eGenes, including 420 that exhibited strong and significant condition-specific effects. Colocalization with OA GWAS signals revealed 13 putative OA risk genes, 10 of which have not been previously identified. Chromatin accessibility and 3D chromatin structure provided insights into the mechanisms and conditional specificity of these variants. Our findings shed light on OA pathogenesis and highlight potential targets for therapeutic development. Highlights: ∘ Comprehensive analysis of sex- and age-related global gene expression in human chondrocytes revealed differences that correlate with osteoarthritis ∘ First response eQTLs in chondrocytes treated with an OA-related stimulus ∘ Deeply sequenced Hi-C in resting and activated chondrocytes helps connect OA risk variants to their putative causal genes ∘ Colocalization analysis reveals 13 (including 10 novel) putative OA risk genes.

3.
medRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38903089

RESUMEN

Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI. We analyzed genotype and blood gene expression data in up to 5,619 samples from the Framingham Heart Study (FHS). Using 3,992 single nucleotide polymorphisms (SNPs) at 97 BMI loci and 20,692 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a correlated meta-analysis between the full summary data sets (PMETA). We identified transcripts that met Bonferroni-corrected significance for each omic, were more significant in the correlated meta-analysis than each omic, and were at least nominally associated with BMI in FHS data. Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. Using an independent sample of blood gene expression data, we validated results for SNAPC3 and YPEL3. We tested for generalization of these associations in hypothalamus, nucleus accumbens, and liver and observed significant (PMETA<0.05 & PMETA

5.
Nat Commun ; 15(1): 2095, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453914

RESUMEN

Vertebrates transport hydrophobic triglycerides through the circulatory system by packaging them within amphipathic particles called Triglyceride-Rich Lipoproteins. Yet, it remains largely unknown how triglycerides are loaded onto these particles. Mutations in Phospholipase A2 group 12B (PLA2G12B) are known to disrupt lipoprotein homeostasis, but its mechanistic role in this process remains unclear. Here we report that PLA2G12B channels lipids within the lumen of the endoplasmic reticulum into nascent lipoproteins. This activity promotes efficient lipid secretion while preventing excess accumulation of intracellular lipids. We characterize the functional domains, subcellular localization, and interacting partners of PLA2G12B, demonstrating that PLA2G12B is calcium-dependent and tightly associated with the membrane of the endoplasmic reticulum. We also detect profound resistance to atherosclerosis in PLA2G12B mutant mice, suggesting an evolutionary tradeoff between triglyceride transport and cardiovascular disease risk. Here we identify PLA2G12B as a key driver of triglyceride incorporation into vertebrate lipoproteins.


Asunto(s)
Retículo Endoplásmico , Lipoproteínas , Animales , Ratones , Transporte Biológico , Retículo Endoplásmico/metabolismo , Lipoproteínas/metabolismo , Triglicéridos/metabolismo
6.
CRISPR J ; 7(1): 53-67, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353623

RESUMEN

We developed an efficient CRISPR prime editing protocol and generated isogenic-induced pluripotent stem cell (iPSC) lines carrying heterozygous or homozygous alleles for putatively causal single nucleotide variants at six type 2 diabetes loci (ABCC8, MTNR1B, TCF7L2, HNF4A, CAMK1D, and GCK). Our two-step sequence-based approach to first identify transfected cell pools with the highest fraction of edited cells significantly reduced the downstream efforts to isolate single clones of edited cells. We found that prime editing can make targeted genetic changes in iPSC and optimization of system components and guide RNA designs that were critical to achieve acceptable efficiency. Systems utilizing PEmax, epegRNA modifications, and MLH1dn provided significant benefit, producing editing efficiencies of 36-73%. Editing success and pegRNA design optimization required for each variant differed depending on the sequence at the target site. With attention to design, prime editing is a promising approach to generate isogenic iPSC lines, enabling the study of specific genetic changes in a common genetic background.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Edición Génica , ARN Guía de Sistemas CRISPR-Cas
7.
HGG Adv ; 5(2): 100275, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38297830

RESUMEN

Genome-wide association studies (GWASs) have identified hundreds of risk loci for liver disease and lipid-related metabolic traits, although identifying their target genes and molecular mechanisms remains challenging. We predicted target genes at GWAS signals by integrating them with molecular quantitative trait loci for liver gene expression (eQTL) and liver chromatin accessibility QTL (caQTL). We predicted specific regulatory caQTL variants at four GWAS signals located near EFHD1, LITAF, ZNF329, and GPR180. Using transcriptional reporter assays, we determined that caQTL variants rs13395911, rs11644920, rs34003091, and rs9556404 exhibit allelic differences in regulatory activity. We also performed a protein binding assay for rs13395911 and found that FOXA2 differentially interacts with the alleles of rs13395911. For variants rs13395911 and rs11644920 in putative enhancer regulatory elements, we used CRISPRi to demonstrate that repression of the enhancers altered the expression of the predicted target and/or nearby genes. Repression of the element at rs13395911 reduced the expression of EFHD1, and repression of the element at rs11644920 reduced the expression of LITAF, SNN, and TXNDC11. Finally, we showed that EFHD1 is a metabolically active gene in HepG2 cells. Together, these results provide key steps to connect genetic variants with cellular mechanisms and help elucidate the causes of liver disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hepatopatías , Humanos , Secuencias Reguladoras de Ácidos Nucleicos , Lípidos , Proteínas Portadoras
8.
Genome Med ; 16(1): 19, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297378

RESUMEN

BACKGROUND: Age and obesity are dominant risk factors for several common cardiometabolic disorders, and both are known to impair adipose tissue function. However, the underlying cellular and genetic factors linking aging and obesity on adipose tissue function have remained elusive. Adipose stem and precursor cells (ASPCs) are an understudied, yet crucial adipose cell type due to their deterministic adipocyte differentiation potential, which impacts the capacity to store fat in a metabolically healthy manner. METHODS: We integrated subcutaneous adipose tissue (SAT) bulk (n=435) and large single-nucleus RNA sequencing (n=105) data with the UK Biobank (UKB) (n=391,701) data to study age-obesity interactions originating from ASPCs by performing cell-type decomposition, differential expression testing, cell-cell communication analyses, and construction of polygenic risk scores for body mass index (BMI). RESULTS: We found that the SAT ASPC proportions significantly decrease with age in an obesity-dependent way consistently in two independent cohorts, both showing that the age dependency of ASPC proportions is abolished by obesity. We further identified 76 genes (72 SAT ASPC marker genes and 4 transcription factors regulating ASPC marker genes) that are differentially expressed by age in SAT and functionally enriched for developmental processes and adipocyte differentiation (i.e., adipogenesis). The 76 age-perturbed ASPC genes include multiple negative regulators of adipogenesis, such as RORA, SMAD3, TWIST2, and ZNF521, form tight clusters of longitudinally co-expressed genes during human adipogenesis, and show age-based differences in cellular interactions between ASPCs and adipose cell types. Finally, our genetic data demonstrate that cis-regional variants of these genes interact with age as predictors of BMI in an obesity-dependent way in the large UKB, while no such gene-age interaction on BMI is observed with non-age-dependent ASPC marker genes, thus independently confirming our cellular ASPC results at the biobank level. CONCLUSIONS: Overall, we discover that obesity prematurely induces a decrease in ASPC proportions and identify 76 developmentally important ASPC genes that implicate altered negative regulation of fat cell differentiation as a mechanism for aging and directly link aging to obesity via significant cellular and genetic interactions.


Asunto(s)
Tejido Adiposo , Obesidad , Humanos , Diferenciación Celular/genética , Obesidad/genética , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Envejecimiento/genética , Factores de Transcripción/metabolismo
9.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168419

RESUMEN

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA