Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16000, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987406

RESUMEN

Genomic surveillance (GS) programmes were crucial in identifying and quantifying the mutating patterns of SARS-CoV-2 during the COVID-19 pandemic. In this work, we develop a Bayesian framework to quantify the relative transmissibility of different variants tailored for regions with limited GS. We use it to study the relative transmissibility of SARS-CoV-2 variants in Chile. Among the 3443 SARS-CoV-2 genomes collected between January and June 2021, where sampling was designed to be representative, the Gamma (P.1), Lambda (C.37), Alpha (B.1.1.7), B.1.1.348, and B.1.1 lineages were predominant. We found that Lambda and Gamma variants' reproduction numbers were 5% (95% CI: [1%, 14%]) and 16% (95% CI: [11%, 21%]) larger than Alpha's, respectively. Besides, we observed a systematic mutation enrichment in the Spike gene for all circulating variants, which strongly correlated with variants' transmissibility during the studied period (r = 0.93, p-value = 0.025). We also characterised the mutational signatures of local samples and their evolution over time and with the progress of vaccination, comparing them with those of samples collected in other regions worldwide. Altogether, our work provides a reliable method for quantifying variant transmissibility under subsampling and emphasises the importance of continuous genomic surveillance.


Asunto(s)
Teorema de Bayes , COVID-19 , Mutación , SARS-CoV-2 , Chile , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/transmisión , COVID-19/virología , COVID-19/epidemiología , Genoma Viral , Glicoproteína de la Espiga del Coronavirus/genética
2.
J Phys Chem Lett ; 15(12): 3404-3411, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502942

RESUMEN

The process of dissociation for two hydrofluorocarbon molecules in low triplet states excited by electron impact in plasma is investigated by ab initio molecular dynamics (AIMD). The interest in the dissociation of hydrofluorocarbons in plasma is motivated by their role in plasma etching in microelectronic technologies. Dissociation of triplet states is very fast, and the reaction products can be predicted. In this work, it was found that higher triplet states relax into the lowest triplet state within a few femtoseconds due to nonadiabatic dynamics, such that the simplest ab initio MD on the lowest triplet state seems to give a reasonable estimate of the reaction channels branching ratios. We provide evidence of the existence of simple rules for the dissociation of hydrofluorocarbon molecules in triplet states. For molecules with a double bond, the bonds adjacent to the double bond dissociate faster than the other bonds.

3.
Nat Commun ; 14(1): 122, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653337

RESUMEN

Large-scale events like the UEFA Euro 2020 football (soccer) championship offer a unique opportunity to quantify the impact of gatherings on the spread of COVID-19, as the number and dates of matches played by participating countries resembles a randomized study. Using Bayesian modeling and the gender imbalance in COVID-19 data, we attribute 840,000 (95% CI: [0.39M, 1.26M]) COVID-19 cases across 12 countries to the championship. The impact depends non-linearly on the initial incidence, the reproduction number R, and the number of matches played. The strongest effects are seen in Scotland and England, where as much as 10,000 primary cases per million inhabitants occur from championship-related gatherings. The average match-induced increase in R was 0.46 [0.18, 0.75] on match days, but important matches caused an increase as large as +3. Altogether, our results provide quantitative insights that help judge and mitigate the impact of large-scale events on pandemic spread.


Asunto(s)
COVID-19 , Fútbol , Humanos , Teorema de Bayes , COVID-19/epidemiología , Inglaterra , Escocia
4.
Sci Adv ; 7(41): eabg2243, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34623913

RESUMEN

The traditional long-term solutions for epidemic control involve eradication or population immunity. Here, we analytically derive the existence of a third viable solution: a stable equilibrium at low case numbers, where test-trace-and-isolate policies partially compensate for local spreading events and only moderate restrictions remain necessary. In this equilibrium, daily cases stabilize around ten or fewer new infections per million people. However, stability is endangered if restrictions are relaxed or case numbers grow too high. The latter destabilization marks a tipping point beyond which the spread self-accelerates. We show that a lockdown can reestablish control and that recurring lockdowns are not necessary given sustained, moderate contact reduction. We illustrate how this strategy profits from vaccination and helps mitigate variants of concern. This strategy reduces cumulative cases (and fatalities) four times more than strategies that only avoid hospital collapse. In the long term, immunization, large-scale testing, and international coordination will further facilitate control.

5.
PLoS Comput Biol ; 17(9): e1009288, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34473693

RESUMEN

Mass vaccination offers a promising exit strategy for the COVID-19 pandemic. However, as vaccination progresses, demands to lift restrictions increase, despite most of the population remaining susceptible. Using our age-stratified SEIRD-ICU compartmental model and curated epidemiological and vaccination data, we quantified the rate (relative to vaccination progress) at which countries can lift non-pharmaceutical interventions without overwhelming their healthcare systems. We analyzed scenarios ranging from immediately lifting restrictions (accepting high mortality and morbidity) to reducing case numbers to a level where test-trace-and-isolate (TTI) programs efficiently compensate for local spreading events. In general, the age-dependent vaccination roll-out implies a transient decrease of more than ten years in the average age of ICU patients and deceased. The pace of vaccination determines the speed of lifting restrictions; Taking the European Union (EU) as an example case, all considered scenarios allow for steadily increasing contacts starting in May 2021 and relaxing most restrictions by autumn 2021. Throughout summer 2021, only mild contact restrictions will remain necessary. However, only high vaccine uptake can prevent further severe waves. Across EU countries, seroprevalence impacts the long-term success of vaccination campaigns more strongly than age demographics. In addition, we highlight the need for preventive measures to reduce contagion in school settings throughout the year 2021, where children might be drivers of contagion because of them remaining susceptible. Strategies that maintain low case numbers, instead of high ones, reduce infections and deaths by factors of eleven and five, respectively. In general, policies with low case numbers significantly benefit from vaccination, as the overall reduction in susceptibility will further diminish viral spread. Keeping case numbers low is the safest long-term strategy because it considerably reduces mortality and morbidity and offers better preparedness against emerging escape or more contagious virus variants while still allowing for higher contact numbers (freedom) with progressing vaccinations.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunación Masiva , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Preescolar , Unión Europea/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Vacunación Masiva/legislación & jurisprudencia , Vacunación Masiva/estadística & datos numéricos , Persona de Mediana Edad , Adulto Joven
6.
Lancet Reg Health Eur ; 8: 100185, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34345876

RESUMEN

How will the coronavirus disease 2019 (COVID-19) pandemic develop in the coming months and years? Based on an expert survey, we examine key aspects that are likely to influence the COVID-19 pandemic in Europe. The challenges and developments will strongly depend on the progress of national and global vaccination programs, the emergence and spread of variants of concern (VOCs), and public responses to non-pharmaceutical interventions (NPIs). In the short term, many people remain unvaccinated, VOCs continue to emerge and spread, and mobility and population mixing are expected to increase. Therefore, lifting restrictions too much and too early risk another damaging wave. This challenge remains despite the reduced opportunities for transmission given vaccination progress and reduced indoor mixing in summer 2021. In autumn 2021, increased indoor activity might accelerate the spread again, whilst a necessary reintroduction of NPIs might be too slow. The incidence may strongly rise again, possibly filling intensive care units, if vaccination levels are not high enough. A moderate, adaptive level of NPIs will thus remain necessary. These epidemiological aspects combined with economic, social, and health-related consequences provide a more holistic perspective on the future of the COVID-19 pandemic.

7.
Nat Commun ; 12(1): 378, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452267

RESUMEN

Without a cure, vaccine, or proven long-term immunity against SARS-CoV-2, test-trace-and-isolate (TTI) strategies present a promising tool to contain its spread. For any TTI strategy, however, mitigation is challenged by pre- and asymptomatic transmission, TTI-avoiders, and undetected spreaders, which strongly contribute to "hidden" infection chains. Here, we study a semi-analytical model and identify two tipping points between controlled and uncontrolled spread: (1) the behavior-driven reproduction number [Formula: see text] of the hidden chains becomes too large to be compensated by the TTI capabilities, and (2) the number of new infections exceeds the tracing capacity. Both trigger a self-accelerating spread. We investigate how these tipping points depend on challenges like limited cooperation, missing contacts, and imperfect isolation. Our results suggest that TTI alone is insufficient to contain an otherwise unhindered spread of SARS-CoV-2, implying that complementary measures like social distancing and improved hygiene remain necessary.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/prevención & control , Trazado de Contacto/métodos , Tamizaje Masivo/métodos , SARS-CoV-2/aislamiento & purificación , Algoritmos , COVID-19/epidemiología , COVID-19/virología , Control de Enfermedades Transmisibles/métodos , Humanos , Modelos Teóricos , Pandemias , Reproducibilidad de los Resultados , SARS-CoV-2/fisiología
8.
Cancer Discov ; 10(2): 214-231, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31771968

RESUMEN

Spleen tyrosine kinase (SYK) is a nonmutated therapeutic target in acute myeloid leukemia (AML). Attempts to exploit SYK therapeutically in AML have shown promising results in combination with chemotherapy, likely reflecting induced mechanisms of resistance to single-agent treatment in vivo. We conducted a genome-scale open reading frame (ORF) resistance screen and identified activation of the RAS-MAPK-ERK pathway as one major mechanism of resistance to SYK inhibitors. This finding was validated in AML cell lines with innate and acquired resistance to SYK inhibitors. Furthermore, patients with AML with select mutations activating these pathways displayed early resistance to SYK inhibition. To circumvent SYK inhibitor therapy resistance in AML, we demonstrate that a MEK and SYK inhibitor combination is synergistic in vitro and in vivo. Our data provide justification for use of ORF screening to identify resistance mechanisms to kinase inhibitor therapy in AML lacking distinct mutations and to direct novel combination-based strategies to abrogate these. SIGNIFICANCE: The integration of functional genomic screening with the study of mechanisms of intrinsic and acquired resistance in model systems and human patients identified resistance to SYK inhibitors through MAPK signaling in AML. The dual targeting of SYK and the MAPK pathway offers a combinatorial strategy to overcome this resistance.This article is highlighted in the In This Issue feature, p. 161.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasa Syk/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico , Línea Celular Tumoral , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Difenilamina/análogos & derivados , Difenilamina/farmacología , Difenilamina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Indazoles/farmacología , Indazoles/uso terapéutico , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Sistemas de Lectura Abierta/genética , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Pirazinas/farmacología , Pirazinas/uso terapéutico , Quinasa Syk/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nat Commun ; 10(1): 3475, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375673

RESUMEN

Hypomethylating agents decitabine and azacytidine are regarded as interchangeable in the treatment of acute myeloid leukemia (AML). However, their mechanisms of action remain incompletely understood, and predictive biomarkers for HMA efficacy are lacking. Here, we show that the bioactive metabolite decitabine triphosphate, but not azacytidine triphosphate, functions as activator and substrate of the triphosphohydrolase SAMHD1 and is subject to SAMHD1-mediated inactivation. Retrospective immunohistochemical analysis of bone marrow specimens from AML patients at diagnosis revealed that SAMHD1 expression in leukemic cells inversely correlates with clinical response to decitabine, but not to azacytidine. SAMHD1 ablation increases the antileukemic activity of decitabine in AML cell lines, primary leukemic blasts, and xenograft models. AML cells acquire resistance to decitabine partly by SAMHD1 up-regulation. Together, our data suggest that SAMHD1 is a biomarker for the stratified use of hypomethylating agents in AML patients and a potential target for the treatment of decitabine-resistant leukemia.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Azacitidina/análogos & derivados , Azacitidina/farmacología , Azacitidina/uso terapéutico , Médula Ósea/patología , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Decitabina/farmacología , Decitabina/uso terapéutico , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Selección de Paciente , Cultivo Primario de Células , Estudios Retrospectivos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Leukemia ; 33(6): 1411-1426, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30679800

RESUMEN

LSD1 has emerged as a promising epigenetic target in the treatment of acute myeloid leukemia (AML). We used two murine AML models based on retroviral overexpression of Hoxa9/Meis1 (H9M) or MN1 to study LSD1 loss of function in AML. The conditional knockout of Lsd1 resulted in differentiation with both granulocytic and monocytic features and increased ATRA sensitivity and extended the survival of mice with H9M-driven AML. The conditional knockout led to an increased expression of multiple genes regulated by the important myeloid transcription factors GFI1 and PU.1. These include the transcription factors GFI1B and IRF8. We also compared the effect of different irreversible and reversible inhibitors of LSD1 in AML and could show that only tranylcypromine derivatives were capable of inducing a differentiation response. We employed a conditional knock-in model of inactive, mutant LSD1 to study the effect of only interfering with LSD1 enzymatic activity. While this was sufficient to initiate differentiation, it did not result in a survival benefit in mice. Hence, we believe that targeting both enzymatic and scaffolding functions of LSD1 is required to efficiently treat AML. This finding as well as the identified biomarkers may be relevant for the treatment of AML patients with LSD1 inhibitors.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Leucemia Mieloide Aguda/patología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Tranilcipromina/farmacología , Animales , Antidepresivos/farmacología , Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/fisiología , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Noqueados , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Factores de Transcripción/genética , Células Tumorales Cultivadas
13.
Cancer Cell ; 31(4): 549-562.e11, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28399410

RESUMEN

The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/metabolismo , MicroARNs/genética , Proteínas de Neoplasias/metabolismo , Quinasa Syk/metabolismo , Animales , Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Integrina beta3/metabolismo , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Ratones Endogámicos C57BL , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Transducción de Señal , Quinasa Syk/genética
14.
Blood ; 129(10): 1320-1332, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28049638

RESUMEN

Despite currently available therapies, most patients diagnosed with acute myeloid leukemia (AML) die of their disease. Tumor-host interactions are critical for the survival and proliferation of cancer cells; accordingly, we hypothesize that specific targeting of the tumor microenvironment may constitute an alternative or additional strategy to conventional tumor-directed chemotherapy. Because adipocytes have been shown to promote breast and prostate cancer proliferation, and because the bone marrow adipose tissue accounts for up to 70% of bone marrow volume in adult humans, we examined the adipocyte-leukemia cell interactions to determine if they are essential for the growth and survival of AML. Using in vivo and in vitro models of AML, we show that bone marrow adipocytes from the tumor microenvironment support the survival and proliferation of malignant cells from patients with AML. We show that AML blasts alter metabolic processes in adipocytes to induce phosphorylation of hormone-sensitive lipase and consequently activate lipolysis, which then enables the transfer of fatty acids from adipocytes to AML blasts. In addition, we report that fatty acid binding protein-4 (FABP4) messenger RNA is upregulated in adipocytes and AML when in coculture. FABP4 inhibition using FABP4 short hairpin RNA knockdown or a small molecule inhibitor prevents AML proliferation on adipocytes. Moreover, knockdown of FABP4 increases survival in Hoxa9/Meis1-driven AML model. Finally, knockdown of carnitine palmitoyltransferase IA in an AML patient-derived xenograft model improves survival. Here, we report the first description of AML programming bone marrow adipocytes to generate a protumoral microenvironment.


Asunto(s)
Adipocitos/patología , Células de la Médula Ósea/patología , Leucemia Mieloide Aguda/patología , Microambiente Tumoral/fisiología , Adipocitos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Western Blotting , Células de la Médula Ósea/metabolismo , Técnicas de Cocultivo , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Citometría de Flujo , Xenoinjertos , Humanos , Inmunohistoquímica , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Proc Natl Acad Sci U S A ; 113(20): 5688-93, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27155012

RESUMEN

Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments.


Asunto(s)
Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Linfocitos B/metabolismo , Linfoma de Burkitt/patología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional
16.
Reprod Biomed Soc Online ; 2: 88-96, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29892721

RESUMEN

The introduction of IVF in Denmark was accompanied by social transformations: contestations of medical authority, negotiations of who might access reproductive biomedicine and changes in individual and social identity due to reproductive technologies. Looking at the making of Danish IVF, this article sketches its social and cultural history by revisiting the legal, medical, technological and social developments that characterized the introduction of IVF in Denmark as well as by contextualizing the social research on the uses and impacts of IVF carried out in the 1980s and 1990s within these developments. The making of Danish IVF is presented as a transformative event in so far as it changed Denmark from being a society concerned about the social consequences of reproductive technologies to a moral collective characterized by a joined sense of responsibility for Denmark's procreative future.

17.
J Vis Exp ; (96): e52435, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25867170

RESUMEN

In-depth analyses of cancer cell proteomes are needed to elucidate oncogenic pathomechanisms, as well as to identify potential drug targets and diagnostic biomarkers. However, methods for quantitative proteomic characterization of patient-derived tumors and in particular their cellular subpopulations are largely lacking. Here we describe an experimental set-up that allows quantitative analysis of proteomes of cancer cell subpopulations derived from either liquid or solid tumors. This is achieved by combining cellular enrichment strategies with quantitative Super-SILAC-based mass spectrometry followed by bioinformatic data analysis. To enrich specific cellular subsets, liquid tumors are first immunophenotyped by flow cytometry followed by FACS-sorting; for solid tumors, laser-capture microdissection is used to purify specific cellular subpopulations. In a second step, proteins are extracted from the purified cells and subsequently combined with a tumor-specific, SILAC-labeled spike-in standard that enables protein quantification. The resulting protein mixture is subjected to either gel electrophoresis or Filter Aided Sample Preparation (FASP) followed by tryptic digestion. Finally, tryptic peptides are analyzed using a hybrid quadrupole-orbitrap mass spectrometer, and the data obtained are processed with bioinformatic software suites including MaxQuant. By means of the workflow presented here, up to 8,000 proteins can be identified and quantified in patient-derived samples, and the resulting protein expression profiles can be compared among patients to identify diagnostic proteomic signatures or potential drug targets.


Asunto(s)
Espectrometría de Masas/métodos , Neoplasias/química , Neoplasias/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Cromatografía Liquida/métodos , Citometría de Flujo/métodos , Humanos , Captura por Microdisección con Láser/métodos , Proteómica/métodos
18.
Blood ; 125(12): 1936-47, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25605370

RESUMEN

Acute myeloid leukemia (AML) is driven by niche-derived and cell-autonomous stimuli. Although many cell-autonomous disease drivers are known, niche-dependent signaling in the context of the genetic disease heterogeneity has been difficult to investigate. Here, we analyzed the role of Bruton tyrosine kinase (BTK) in AML. BTK was frequently expressed, and its inhibition strongly impaired the proliferation and survival of AML cells also in the presence of bone marrow stroma. By interactome analysis, (phospho)proteomics, and transcriptome sequencing, we characterized BTK signaling networks. We show that BTK-dependent signaling is highly context dependent. In Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD)-positive AML, BTK mediates FLT3-ITD-dependent Myc and STAT5 activation, and combined targeting of FLT3-ITD and BTK showed additive effects. In Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD)-negative AML, BTK couples Toll-like receptor 9 (TLR9) activation to nuclear factor κΒ and STAT5. Both BTK-dependent transcriptional programs were relevant for cell cycle progression and apoptosis regulation. Thus, we identify context-dependent oncogenic driver events that may guide subtype-specific treatment strategies and, for the first time, point to a role of TLR9 in AML. Clinical evaluation of BTK inhibitors in AML seems warranted.


Asunto(s)
Leucemia Mieloide Aguda/inmunología , Proteínas Tirosina Quinasas/metabolismo , Receptor Toll-Like 9/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Adulto , Agammaglobulinemia Tirosina Quinasa , Apoptosis , Células de la Médula Ósea/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Activación Enzimática , Regulación Leucémica de la Expresión Génica , Humanos , Inmunohistoquímica , Leucemia Mieloide Aguda/metabolismo , Espectrometría de Masas , Persona de Mediana Edad , FN-kappa B/metabolismo , Fosforilación , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Tirosina/química , Adulto Joven
19.
Med Anthropol ; 34(5): 470-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25634118

RESUMEN

Danish sperm donors face a particular kind of kinship trouble: they find themselves in a cultural and organizational context that offers different and contrary ways of how to make connections to donor-conceived individuals meaningful. Whereas Danish sperm banks and Danish law want sperm donors to regard these connections as contractual issues, the dominant kinship narrative in Denmark asks sperm donors to also consider them as family and kinship relations. Based on interviews with Danish sperm donors and participant observation at Danish sperm banks, I argue that Danish sperm donors make sense of connections to donor-conceived individuals as a particular kind of relatedness that cannot be reduced to either contractual or kinship relations. Making sense of these connections, sperm donors negotiate their social significance and thereby participate in opening a space which offers avenues for new kinds of sociality.


Asunto(s)
Espermatozoides , Donantes de Tejidos/psicología , Adolescente , Adulto , Antropología Médica , Dinamarca , Humanos , Masculino , Narración , Técnicas Reproductivas Asistidas/psicología , Adulto Joven
20.
Anthropol Med ; 21(2): 162-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25175292

RESUMEN

This paper, analyzing interviews with men that donate their semen in Denmark, explores what it means to be a sperm donor. Breaking with the assumption that men have a specific and clearly identifiable motivation to become sperm donors, this paper leaves the confinement of such an accountable actor model implied in asking for men's motivations to donate semen. Instead, the author describes the experiences of sperm donors to show how the moral, organizational, and biomedical-technological context of sperm donation in Denmark makes for enactments of moral selves as well as specific embodiments of masculinity. Instead of looking for motivations that can be accounted for, the author engages with the question of how donating semen affords men the experience of moral and gendered selves.


Asunto(s)
Masculinidad , Espermatozoides , Donantes de Tejidos/ética , Donantes de Tejidos/psicología , Adolescente , Adulto , Antropología Médica , Dinamarca , Humanos , Masculino , Motivación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA