Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255906

RESUMEN

Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the Nlgn3 gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (Nlgn3R451C mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in Nlgn3R451C mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the Nlgn3 R451C mutation in mice backcrossed onto a C57BL/6 background. We report that Nlgn3R451C mice show a 30.9% faster gastrointestinal transit (p = 0.0004) in vivo and have 6% longer small intestines (p = 0.04) compared to wild-types due to a reduction in smooth muscle tone. In Nlgn3R451C mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease, p = 0.02; mid: 9.8%, p = 0.04; distal: 11.5%, p = 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration, p = 0.009; distal: 30.5%, p = 0.004) in the ileum. In Nlgn3R451C mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABAA antagonist, gabazine, compared to 40.6% in wild-type mice (p = 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT p = 0.0006, Nlgn3R451C p = 0.002), but not the ileum, in both wild-type and Nlgn3R451C mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein.


Asunto(s)
Trastorno Autístico , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Trastorno Autístico/genética , Tránsito Gastrointestinal , Intestino Delgado , Yeyuno , Modelos Animales de Enfermedad , Cafeína , Antagonistas del GABA
2.
Bio Protoc ; 13(19): e4831, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37817909

RESUMEN

Different regions of the gastrointestinal tract have specific functions and thus distinct motility patterns. Motility is primarily regulated by the enteric nervous system (ENS), an intrinsic network of neurons located within the gut wall. Under physiological conditions, the ENS is influenced by the central nervous system (CNS). However, by using ex vivo organ bath experiments, ENS regulation of gut motility can also be studied in the absence of CNS influences. The current technique enables the characterisation of small intestinal, caecal, and colonic motility patterns using an ex vivo organ bath and video imaging protocol. This approach is combined with the novel edge detection script GutMap, available in MATLAB, that functions across Windows and Mac platforms. Dissected intestinal segments are cannulated in an organ bath containing physiological saline with a camera mounted overhead. Video recordings of gut contractions are then converted to spatiotemporal heatmaps and analysed using the GutMap software interface. Using data analysed from the heatmaps, parameters of contractile patterns (including contraction propagation frequency and velocity as well as gut diameter) at baseline and in the presence of drugs/treatments/genetic mutations can be compared. Here, we studied motility patterns of female mice at baseline and in the presence of a nitric oxide synthase inhibitor (Nω-Nitro-L-arginine; NOLA) (nitric oxide being the main inhibitory neurotransmitter of gut motility) to showcase the application of GutMap. This technique is suitable for application to a broad range of animal models of clinical disorders to understand underlying biological pathways contributing to gastrointestinal dysfunction. Key features • Enhanced video imaging analysis of gut contractility in rodents using a novel software interface. • New edge detection algorithm to accurately contour curvatures of the gastrointestinal tract. • Allows for output of high-resolution spatiotemporal heatmaps across Windows and Mac platforms. • Edge detection and analysis method makes motility measurements accessible in different gut regions including the caecum and stomach.

3.
Infect Immun ; 91(11): e0009723, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37830823

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of bacterial diarrhea with the potential to cause long-term gastrointestinal (GI) dysfunction. Preventative treatments for ETEC-induced diarrhea exist, yet the effects of these treatments on GI commensals in healthy individuals are unclear. Whether administration of a prophylactic preventative treatment for ETEC-induced diarrhea causes specific shifts in gut microbial populations in controlled environments is also unknown. Here, we studied the effects of a hyperimmune bovine colostrum (IMM-124E) used in the manufacture of Travelan (AUST L 106709) on GI bacteria in healthy C57BL/6 mice. Using next-generation sequencing, we aimed to test the onset and magnitude of potential changes to the mouse gut microbiome in response to the antidiarrheagenic hyperimmune bovine colostrum product, rich in immunoglobulins against select ETEC strains (Travelan, Immuron Ltd). We show that in mice administered colostrum containing lipopolysaccharide (LPS) antibodies, there was an increased abundance of potentially gut-beneficial bacteria, such as Akkermansia and Desulfovibrio, without disrupting the underlying ecology of the GI tract. Compared to controls, there was no difference in overall weight gain, body or cecal weights, or small intestine length following LPS antibody colostrum supplementation. Overall, dietary supplementation with colostrum containing LPS antibodies produced subtle alterations in the gut bacterial composition of mice. Primarily, Travelan LPS antibody treatment decreased the ratio of Firmicutes/Bacteroidetes in gut microbial populations in unchallenged healthy mice. Further studies are required to examine the effect of Travelan LPS antibody treatment to engineer the microbiome in a diseased state and during recovery.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Femenino , Embarazo , Ratones , Animales , Bovinos , Lipopolisacáridos , Inmunoglobulina G , Calostro , Ratones Endogámicos C57BL , Factores Inmunológicos , Diarrea/microbiología , Infecciones por Escherichia coli/prevención & control
4.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G230-G238, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37431584

RESUMEN

Maternal influenza A virus (IAV) infection during pregnancy can affect offspring immune programming and development. Offspring born from influenza-infected mothers are at increased risk of neurodevelopmental disorders and have impaired respiratory mucosal immunity against pathogens. The gut-associated lymphoid tissue (GALT) represents a large proportion of the immune system in the body and plays an important role in gastrointestinal (GI) homeostasis. This includes immune modulation to antigens derived from food or microbes, gut microbiota composition, and gut-brain axis signaling. Therefore, in this study, we investigated the effect of maternal IAV infection on mucosal immunity of the GI tract in the offspring. There were no major anatomical changes to the gastrointestinal tract of offspring born to influenza-infected dams. In contrast, maternal IAV did affect the mucosal immunity of offspring, showing regional differences in immune cell profiles within distinct GALT. Neutrophils, monocytes/macrophages, CD4+ and CD8+ T cells infiltration was increased in the cecal patch offspring from IAV-infected dams. In the Peyer's patches, only activated CD4+ T cells were increased in IAV offspring. IL-6 gene expression was also elevated in the cecal patch but not in the Peyer's patches of IAV offspring. These findings suggest that maternal IAV infection perturbs homeostatic mucosal immunity in the offspring gastrointestinal tract. This could have profound ramifications on the gut-brain axis and mucosal immunity in the lungs leading to increased susceptibility to respiratory infections and neurological disorders in the offspring later in life.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy is associated with changes in gut-associated lymphoid tissue (GALT) in the offspring in a region-dependent manner. Neutrophils and monocytes/macrophages were elevated in the cecal patch of offspring from infected dams. This increase in innate immune cell infiltration was not observed in the Peyer's patches. T cells were also elevated in the cecal patch but not in the Peyer's patches.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Embarazo , Femenino , Ratones , Animales , Humanos , Ganglios Linfáticos Agregados , Inmunidad Mucosa , Linfocitos T CD8-positivos
5.
Clin Sci (Lond) ; 134(22): 2943-2957, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33125061

RESUMEN

Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The underlying mechanisms and precise effects of CS on gut contractility, however, are not fully characterised. Therefore, the aim of the present study was to investigate whether CS impacts GI function and structure in a mouse model of CS-induced COPD. We also aimed to investigate GI function in the presence of ebselen, an antioxidant that has shown beneficial effects on lung inflammation resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI structure was analysed by histology and immunofluorescence. After 2 months of CS exposure, ex vivo gut motility was analysed using video-imaging techniques to examine changes in colonic migrating motor complexes (CMMCs). CS decreased colon length in mice. Mice exposed to CS for 2 months had a higher frequency of CMMCs and a reduced resting colonic diameter but no change in enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC frequency changes but not the reduced colonic diameter phenotype. Ebselen treatment reversed the CS-induced reduction in colonic diameter. After 6 months CS, the number of myenteric nitric-oxide producing neurons was significantly reduced. This is the first evidence of colonic dysmotility in a mouse model of CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron numbers; however, prolonged CS-exposure significantly reduced enteric neuron numbers in mice. Further research is needed to assess potential therapeutic applications of ebselen in GI dysfunction in COPD.


Asunto(s)
Azoles/farmacología , Fumar Cigarrillos/efectos adversos , Tracto Gastrointestinal/fisiopatología , Compuestos de Organoselenio/farmacología , Animales , Recuento de Células , Forma de la Célula/efectos de los fármacos , Colon/efectos de los fármacos , Colon/patología , Colon/fisiopatología , Sistema Nervioso Entérico/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Isoindoles , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Moco/efectos de los fármacos , Moco/metabolismo , Plexo Mientérico/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
6.
Stem Cell Reports ; 8(2): 476-488, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28089669

RESUMEN

Cell therapy is a promising approach to generate an enteric nervous system (ENS) and treat enteric neuropathies. However, for translation to the clinic, it is highly likely that enteric neural progenitors will require manipulation prior to transplantation to enhance their ability to migrate and generate an ENS. In this study, we examine the effects of exposure to several factors on the ability of ENS progenitors, grown as enteric neurospheres, to migrate and generate an ENS. Exposure to glial-cell-line-derived neurotrophic factor (GDNF) resulted in a 14-fold increase in neurosphere volume and a 12-fold increase in cell number. Following co-culture with embryonic gut or transplantation into the colon of postnatal mice in vivo, cells derived from GDNF-treated neurospheres showed a 2-fold increase in the distance migrated compared with controls. Our data show that the ability of enteric neurospheres to generate an ENS can be enhanced by exposure to appropriate factors.


Asunto(s)
Diferenciación Celular , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/embriología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Animales , Biomarcadores , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Movimiento Celular , Proliferación Celular , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Ratones , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...