Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 29(23): 38858-38869, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808929

RESUMEN

We report a quantum key distribution using subcarrier wave encoding in Plug&Play configuration. Our detailed study shows how subcarrier encoding operates in a presence of Rayleigh back-scattering, chromatic dispersion and other experimental negative factors that occur in Plug&Play configuration. We propose and experimentally demonstrate a novel regime for the subcarrier wave encoding, where simultaneous detection of two logical states in a single basis is combined with robustness and simplicity of the original protocol. This deep modulation regime shows reliable quantum communication with losses up to 20 dB and promises a twice increase in secret key generation rate in comparison with the original subcarrier wave quantum key distribution in one-way or Plug&Play configurations.

2.
Opt Lett ; 44(7): 1678-1681, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933120

RESUMEN

We perform balanced homodyne detection of the electromagnetic field in a single-mode tapered optical nanofiber surrounded by rubidium atoms in a magneto-optical trap. Resonant fluorescence of atoms into the nanofiber mode manifests itself as increased quantum noise of the field quadratures. The autocorrelation function of the homodyne detector's output photocurrent exhibits exponential fall-off with a decay time constant of 26.3±0.6 ns, which is consistent with the theoretical expectation under our experimental conditions. To the best of our knowledge, this is the first experiment in which fluorescence into a tapered optical nanofiber has been observed and measured by balanced optical homodyne detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA